## Master of Science (M.Sc.) in Mathematics

## **Course Descriptions Year Wise**

# First Year

## **Ordinary Differential Equations (19M21MA111)**

| Course C      | ourse Code 19M21MA111 Semester Odd Semester I Sessio<br>Month from July-I |                                                                                                                                                   |           |                                                 |            |            |                     |                                |
|---------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------|------------|------------|---------------------|--------------------------------|
| Course N      | ame                                                                       | Ordinary I                                                                                                                                        | Different | ial Equations                                   |            |            |                     |                                |
| Credits       |                                                                           | 4                                                                                                                                                 |           |                                                 | Contac     | t Hours    | 3-1-0               |                                |
| Faculty       |                                                                           | Coordina                                                                                                                                          | tor(s)    |                                                 | •          |            |                     |                                |
| (Names)       |                                                                           | Teacher(s                                                                                                                                         |           |                                                 |            |            |                     |                                |
| COURSE        | COURSE OUTCOMES                                                           |                                                                                                                                                   |           |                                                 |            |            | COGNITIVE<br>LEVELS |                                |
| After purs    |                                                                           |                                                                                                                                                   |           | course, the stu                                 |            |            |                     |                                |
| C110.1        | unique                                                                    |                                                                                                                                                   | em of ini | ordinary diffe<br>tial value prob               | •          |            |                     | Understanding<br>Level (C2)    |
| C110.2        |                                                                           | Frobenius<br>l's function                                                                                                                         |           | to solve diffe                                  | erential e | quations a | and discuss         | Applying Level (C3)            |
| C110.3        | differe                                                                   | ential equati                                                                                                                                     | ions.     | lve a system o                                  |            |            |                     | Applying Level (C3)            |
| C110.4        |                                                                           | use of ort                                                                                                                                        | •         | ty of function                                  | ns in solv | ving Sturi | n-Liouville         | Applying Level (C3)            |
| Module<br>No. | Title o                                                                   |                                                                                                                                                   | Topics    | in the Modul                                    | e          |            |                     | No. of Lectures for the module |
| 1.            | Basic<br>linear<br>differe<br>equati                                      | rential equation with constant coefficients, variation of                                                                                         |           |                                                 | 8          |            |                     |                                |
| 2.            | Series                                                                    | Power series solutions about an ordinary point, solutions about singular points; the method of Frobenius, Bessel's equation and Bessel functions. |           |                                                 |            | 5          |                     |                                |
| 3.            | Syster<br>differe<br>equati                                               |                                                                                                                                                   | with co   | trix method for constant coefficient functions. | •          |            | •                   | 5                              |

| 4. | Existence and uniqueness theory               | The fundamental existence and uniqueness theorem, dependence of solutions on initial conditions and on the function.                                                                                                                                                             | 6  |  |  |
|----|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
| 5. | Sturm-Liouville<br>boundary value<br>problems | Theory of the homogeneous linear system, the non-homogeneous linear system, Strum Theory, Strum-Liouville problems, orthogonality of characteristic functions, the expansion of a function in a series of orthonormal functions, trigonometric Fourier series, Green's function. | 14 |  |  |
| 6. | Nonlinear<br>differential<br>equations        | Phase plane, paths and critical points, critical points and path of linear systems, critical points and path of non-linear systems.                                                                                                                                              | 4  |  |  |
|    | Total number of lectures                      |                                                                                                                                                                                                                                                                                  |    |  |  |

| Components | Maximum Marks |
|------------|---------------|
|------------|---------------|

T1 20 T2 20 End Semester Examination 35

TA 25 (Quiz, Assignments, Tutorials)

Total 100

**Project based learning:** Each student in a group of 3-4 will apply the concepts of homogeneous and non-homogeneous linear systems and BVPs to solve practical problems.

**Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. S. L. Ross, Differential Equations, 3<sup>rd</sup> Ed., John Wiley & Sons, Singapore, 2007.
- 2. G. F. Simmons, Differential Equations with Applications and Historical Notes, 3<sup>rd</sup> Ed., CRC Press, Boca Raton, 2016.
- 3. P. L. Sachdev, A Compendium on Nonlinear Ordinary Differential Equations, Wiley-Blackwell,
- **E. A. Coddington,** An Introduction to Ordinary Differential Equations, Dover Publications, 2012.

|        | PO1  | PO2  | PO3  | PSO1 |
|--------|------|------|------|------|
| C110.1 | 3    | 2    | -    | 2    |
| C110.2 | 3    | 2    | -    | 2    |
| C110.3 | 3    | 2    | 1    | 2    |
| C110.4 | 2    | 2    | 1    | 2    |
| AVG    | 2.75 | 2.00 | 1.00 | 2.00 |

# Real Analysis (19M21MA112)

| Course C      | ode                       | 19M21            | MA112                                                                                                                                                | Semester                                                                        | Odd                                                            | Semester I Session Month from July-De  |                                                        |                                |
|---------------|---------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------|--------------------------------------------------------|--------------------------------|
| Course N      | ame                       | Real A           | nalysis                                                                                                                                              | l                                                                               |                                                                | I                                      |                                                        |                                |
| Credits       |                           | 4                |                                                                                                                                                      |                                                                                 | Contact                                                        | Hours                                  | 3-1-0                                                  |                                |
| Faculty       |                           | Coordi           | inator(s)                                                                                                                                            |                                                                                 |                                                                |                                        |                                                        |                                |
| (Names)       |                           | Teache<br>(Alpha | er(s)<br>betically)                                                                                                                                  |                                                                                 |                                                                |                                        |                                                        |                                |
| COURSE        | COURSE OUTCOMES           |                  |                                                                                                                                                      |                                                                                 |                                                                |                                        |                                                        | COGNITIVE<br>LEVELS            |
| After purs    | suing the                 | e above-         | mentioned o                                                                                                                                          | course, the stu                                                                 | dents will b                                                   | e able to                              | :                                                      |                                |
| C111.1        | _                         |                  | space, sectheir proper                                                                                                                               | quence and s<br>ties.                                                           | eries, conti                                                   | inuity, n                              | neasures and                                           | Understanding<br>Level (C2)    |
| C111.2        | conve                     | rgence a         | nd its prope                                                                                                                                         | sequence and<br>rties on variou                                                 | ıs problems                                                    | 3.                                     |                                                        | Applying Level (C3)            |
| C111.3        | solvin                    | g related        | l problems.                                                                                                                                          | of metric space                                                                 |                                                                |                                        |                                                        | Applying Level (C3)            |
| C111.4        |                           |                  | continuity, f functions.                                                                                                                             | measurabili                                                                     | ty, integra                                                    | ability a                              | and uniform                                            | Analyzing Level (C4)           |
| Module<br>No. | Title o                   |                  | Topics in                                                                                                                                            | the Module                                                                      |                                                                |                                        |                                                        | No. of Lectures for the module |
| 1.            | Revie                     | w of             |                                                                                                                                                      | untable and u                                                                   |                                                                |                                        | etric spaces,                                          | 4                              |
| 2.            | Seque<br>and se           |                  | Convergent sequences, sub sequences, Cauchy sequences, power series, absolute convergence, algebra of series, rearrangements of elements in a series |                                                                                 |                                                                |                                        |                                                        | 5                              |
|               |                           |                  | of series, r                                                                                                                                         | •                                                                               |                                                                | •                                      |                                                        |                                |
| 3.            | Contin                    | nuity            | Limits of                                                                                                                                            | functions, conness, monotor                                                     | s of elemen                                                    | ts in a se                             | ries compactness,                                      | 6                              |
| 4.            | The Riema Stieltj integra | unn-<br>es       | Limits of a connected limits at in Definition integral, 1                                                                                            | functions, comess, monotor finity.  and existed properties of tion, integration | s of elemen<br>atinuous function<br>nic function<br>nce of the | ts in a senctions, ones, infinite Riem | compactness, te limits and nann-Stieltjes egration and | 9                              |

| 6.       | Lebesgue           | Measurable sets and their properties, Lebesgue measure, measurable functions, Lebesgue integral of functions of arbitrary sign, integrable functions. | 8  |  |
|----------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
|          |                    | Total number of lectures                                                                                                                              | 42 |  |
| Evaluati | ion Criteria       |                                                                                                                                                       |    |  |
| Compor   | nents              | Maximum Marks                                                                                                                                         |    |  |
| T1       |                    | 20                                                                                                                                                    |    |  |
| T2       |                    | 20                                                                                                                                                    |    |  |
| End Sem  | nester Examination | on 35                                                                                                                                                 |    |  |
| TA       |                    |                                                                                                                                                       |    |  |

**Project based learning:** Students will be divided in the group of 2-3 students to collect the literature and to explore the applications of series, sequences and Lebesgue integral.

**Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. W. Rudin, Principles of Mathematical Analysis, 3<sup>rd</sup> Ed., New Delhi, McGraw-Hill Inc., 2013.
- 2. H. L. Royden, and P. M. Fitzpatrick, Real Analysis, 4<sup>rd</sup> Ed., New Delhi, Pearson, 2010.
- 3. N. L. Carothers, Real Analysis, Cambridge University Press, 2000.

100

- **4. T. M. Apostol,** Mathematical Analysis –A modern approach to Advanced Calculus, New Delhi, Addison-Wesley, 1974.
- **5. R. G. Bartle, and D. R. Sherbert,** Introduction to Real Analysis, 4<sup>th</sup> Ed., Wiley, 2011.

### **CO-PO-PSO Mapping**

Total

|        | PO1  | PO2  | PO3  | PSO1 |
|--------|------|------|------|------|
| C111.1 | 2    | 1    | -    | 1    |
| C111.2 | 3    | 2    | -    | 2    |
| C111.3 | 3    | 2    | -    | 2    |
| C111.4 | 3    | 2    | 1    | 2    |
| AVG    | 2.75 | 1.75 | 1.00 | 1.75 |

### Abstract Algebra (19M21MA113)

| Course Code | 19M21MA113 | Semester | Odd | Semester I Session- 2024-2025 |
|-------------|------------|----------|-----|-------------------------------|
|             |            |          |     | Month from Jul -Dec 2024      |

| Course N            | lame                                                                                                | Abstract Algebra                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                             |             |                                |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|--|--|
| Credits             |                                                                                                     | 4                                                                                                                                                                                                                                                                             | <b>Contact Hours</b>                                                                                                                                                                                                                                                                                        | 3-1-0       |                                |  |  |
| Faculty (           | Names)                                                                                              | Coordinator(s)                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |             |                                |  |  |
|                     |                                                                                                     | Teacher(s)<br>(Alphabetically)                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                             |             |                                |  |  |
| COURSI              | E OUTCOME                                                                                           | S                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                             |             | COGNITIVE<br>LEVELS            |  |  |
| After purs          | suing this cour                                                                                     | se, the students will b                                                                                                                                                                                                                                                       | be able to:                                                                                                                                                                                                                                                                                                 |             |                                |  |  |
| C112.1              | recall the bas                                                                                      | ics of group and ring                                                                                                                                                                                                                                                         | theory.                                                                                                                                                                                                                                                                                                     |             | Remembering (C1)               |  |  |
| C112.2              | explain Caylo<br>and their proj                                                                     |                                                                                                                                                                                                                                                                               | eorems, rings, ideals, modu                                                                                                                                                                                                                                                                                 | les, fields | Understanding (C2)             |  |  |
| C112.3              |                                                                                                     |                                                                                                                                                                                                                                                                               | domain, principal ideal<br>modules in solving related p                                                                                                                                                                                                                                                     |             | Applying (C3) Analyzing (C4)   |  |  |
| C112.4              | C112.4 examine Euclidian domain, Unique factorization domain, fields extensions and its properties. |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                             |             |                                |  |  |
| Module<br>No.       | Title of the<br>Module                                                                              | Topics in the Mod                                                                                                                                                                                                                                                             | ule                                                                                                                                                                                                                                                                                                         |             | No. of Lectures for the module |  |  |
| 1.                  | Groups                                                                                              | group actions, Cay                                                                                                                                                                                                                                                            | Review of basic group theory, isomorphism theorems, group actions, Cayley's theorem, class equation of a group, Cauchy's theorem, p-groups, Sylow's theorems and their applications.                                                                                                                        |             |                                |  |  |
| 2.                  | Rings                                                                                               | isomorphism theore<br>of fractions, inte<br>principal ideal doma<br>(UFD), polynomia                                                                                                                                                                                          | Rings, ideals and homomorphisms, quotient rings, isomorphism theorems, prime and maximal ideals, rings of fractions, integral domain, Euclidean domains, principal ideal domains and unique factorization domains (UFD), polynomial rings over UFDs, criteria for irreducibility of polynomials over UFD's. |             |                                |  |  |
| 3.                  | Modules                                                                                             | sums, quotient                                                                                                                                                                                                                                                                | Basic definitions and examples, submodules and direct sums, quotient modules, homomorphism and isomorphism theorems, cyclic modules, free modules.                                                                                                                                                          |             |                                |  |  |
| 4.                  | Fields                                                                                              | Fields and their extensions, algebraic and finitely generated field extensions, splitting fields and normal extensions, algebraic closures, finite fields, separable and inseparable extensions, Galois groups, fundamental theorem of Galois theory. Applications of fields. |                                                                                                                                                                                                                                                                                                             |             | 10                             |  |  |
|                     |                                                                                                     |                                                                                                                                                                                                                                                                               | Total number of                                                                                                                                                                                                                                                                                             | lectures    | 42                             |  |  |
| Compone<br>T1<br>T2 | on Criteria<br>ents<br>ester Examinat                                                               |                                                                                                                                                                                                                                                                               | Marks Assignments, PBL etc.)                                                                                                                                                                                                                                                                                |             |                                |  |  |

**Project based learning**: Students in small groups will opt a topic form the concerned CO. Students must explore those areas where the theory of fields are used. For example, finite fields are used in number theory, Galois theory, coding theory and combinatorics; and again the notion of algebraic extension is an important tool. Such type of activity enhances student's knowledge in this domain.

| _          |                                                                                                                                                                       |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recon etc. | mended Reading material: Author(s), Title, Edition, Publisher, Year of Publication (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) |
| 1.         | D. S. Dummit and R. M. Foote, Abstract Algebra, 2nd Ed., John Wiley & Sons, 2008.                                                                                     |
| 2.         | S. K. Jain, P. B. Bhattacharya and S. R. Nagpaul, Basic Abstract Algebra, 2nd Ed., Cambridge University Press, 2014.                                                  |
| 3.         | I. N. Herstein, Topics in Algebra, 2 <sup>nd</sup> Ed., John Wiley & Sons, 2006.                                                                                      |
| 4.         | J. B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson Education, 2013.                                                                                 |
| 5.         | C. Carstensen, B. Fine, B. and G. Rosenberger, Abstract Algebra: Applications to Galois Theory, Algebraic Geometry and Cryptography, Heldermann Verlag, 2011.         |

### **CO-PO and CO-PSO Mapping:**

| СО     | PO1 | PO2  | PO3  | PSO1 |
|--------|-----|------|------|------|
| C112.1 | 2   | 1    |      | 1    |
| C112.2 | 2   | 2    |      | 2    |
| C112.3 | 3   | 2    |      | 2    |
| C112.4 | 3   | 2    | 1    | 2    |
| Avg.   | 2.5 | 1.75 | 1.00 | 1.75 |

### **General Topology (19M21MA114)**

| Course C   | ode                                                                      | 19M21MA114                     | Semester ( | Odd   | Serres           | ter I Session<br>from July - I | 0-: -0-0  |
|------------|--------------------------------------------------------------------------|--------------------------------|------------|-------|------------------|--------------------------------|-----------|
| Course N   | ame                                                                      | General Topology               |            |       |                  |                                |           |
| Credits 4  |                                                                          |                                | Contact    | Hours | 3-1-0            |                                |           |
| Faculty    |                                                                          | Coordinator(s)                 |            |       |                  |                                |           |
| (Names)    |                                                                          | Teacher(s)<br>(Alphabetically) |            |       |                  |                                |           |
| COURSE     | E OUT                                                                    | COMES                          |            |       |                  |                                | COGNITIVE |
|            |                                                                          |                                |            |       |                  |                                | LEVELS    |
| After purs | After pursuing the above-mentioned course, the students will be able to: |                                |            |       |                  |                                |           |
| C113.1     |                                                                          |                                |            |       | Remembering (C1) |                                |           |

| C113.2        |                                     | understand the elementary properties of metric space, topological spaces and structures defined on them.                              |                                |  |  |  |
|---------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|
| C113.3        | construct maps<br>types of topolog  | on topological spaces and solve problems on different ies.                                                                            | Applying (C3)                  |  |  |  |
| C113.4        |                                     | he concepts of various topological spaces and their ving related problems.                                                            | Applying (C3)                  |  |  |  |
| Module<br>No. | Title of the<br>Module              | Topics in the Module                                                                                                                  | No. of Lectures for the module |  |  |  |
| 1.            | Metric Space                        | Metric Space Metric space, open sets, closed sets, Convergence, completeness, continuity in metric space, Cantor intersection theorem |                                |  |  |  |
| 2.            | Topological space                   |                                                                                                                                       |                                |  |  |  |
| 3.            | Continuous<br>Function              | 1 ,                                                                                                                                   |                                |  |  |  |
| 4.            | Compactness<br>and<br>Connectedness | 11                                                                                                                                    |                                |  |  |  |
| 5.            | Countability<br>and Separation      | 12                                                                                                                                    |                                |  |  |  |
|               |                                     | Total number of lectures                                                                                                              | 42                             |  |  |  |
|               |                                     |                                                                                                                                       |                                |  |  |  |

| Components               | Maximum Marks                    |
|--------------------------|----------------------------------|
| T1                       | 20                               |
| T2                       | 20                               |
| End Semester Examination | 35                               |
| TA                       | 25 (Quiz, Assignments, PBL etc.) |
| Total                    | 100                              |

**Project based learning:** Each student in a group of 3-4 will apply the concepts of countability and separation axioms of topological spaces in mathematical applications

**Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. G. F. Simmons, Introduction to Topology and Modern Analysis, Tata Mc-Graw Hill Education, New Delhi, 2016.

| 2. | J. R. Munkres, Topology: A First Course, 2 <sup>nd</sup> Ed., PHI, 2010.                   |
|----|--------------------------------------------------------------------------------------------|
| 3. | Y. Min, Introduction to Topology: Theory & Applications, Higher Education Press, 2010.     |
| 4. | S. Lipschutz, General Topology, Schaum's Outline Series, Mc-Graw-Hill, 1985.               |
| 5. | C. A. R. Franzosa, Introduction to Topology, Narosa Publishers, New Delhi, 2007.           |
| 6. | <b>K. D. Joshi,</b> Introduction to General Topology, New Age Publishers, New Delhi, 1983. |

## **CO-PO-PSO Mapping**

|        | PO1  | PO2  | PO3  | PSO1 |
|--------|------|------|------|------|
| G112.1 |      |      |      |      |
| C113.1 | 1    | 1    | -    | 1    |
| C113.2 | 1    | 2    | 1    | 2    |
| C113.3 | 2    | 1    | -    | 2    |
| C113.4 | 3    | 2    | 1    | 2    |
| Avg    | 1.75 | 1.50 | 1.00 | 1.75 |

## **Mathematical Methods (19M21MA115)**

| Course C                                                                                           | ode                                                         | 19M21MA115                                       | Semester O      | dd           | Semester I Session |                     | <b>n-</b> 2024-2025 |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|-----------------|--------------|--------------------|---------------------|---------------------|
|                                                                                                    |                                                             |                                                  |                 |              | Month              | from July-D         | ec 2024             |
| Course N                                                                                           | ame                                                         | Mathematical Me                                  | thods           |              |                    |                     |                     |
| Credits                                                                                            |                                                             | 4                                                |                 | Contact      | Hours              | 3-1-0               |                     |
| Faculty (Names)                                                                                    |                                                             | Coordinator(s)                                   |                 |              |                    |                     |                     |
|                                                                                                    |                                                             | Teacher(s)<br>(Alphabetically)                   |                 |              |                    |                     |                     |
| COURSE                                                                                             | COURSE OUTCOMES                                             |                                                  |                 |              |                    | COGNITIVE<br>LEVELS |                     |
| After purs                                                                                         | suing th                                                    | is course, the student                           | ts will be able | to:          |                    |                     |                     |
| C114.1                                                                                             |                                                             | stand the concept of a<br>stegral transformation |                 | its variatio | ons, integ         | ral equations       | Understanding (C2)  |
| C114.2                                                                                             |                                                             | Fredholm and Volter value problems.              | ra type integra | al equation  | s and use          | e it in solving     | Applying (C3)       |
| c114.3 apply the concept of integral transformations to solve integral and differential equations. |                                                             |                                                  | Applying (C3)   |              |                    |                     |                     |
| C114.4                                                                                             | analyze the variational and boundary value problems and its |                                                  |                 |              | Analyzing (C4)     |                     |                     |

| Module<br>No.               | Title of the<br>Module                                            | Topics in the Module                                                                                                                                                                                                                                                                                                                                                                                                                         | No. of Lectures for the module |  |  |  |
|-----------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|
| 1.                          | Functional<br>and its<br>Variation                                | Introduction, variation and its properties, comparison between the notion of extrema of a function and a functional, construction of functional, problem of brachistochrone, geodesics and isoperimetric problem.                                                                                                                                                                                                                            | 6                              |  |  |  |
| 2.                          | Variational<br>Problems<br>with fixed<br>and moving<br>Boundaries | The system of Euler's equations, the fundamental lemma of the calculus of variations, examples, functionals in the form of integrals, special cases containing only some of the variables, functionals depending on the higher derivatives of the dependent variables, Euler-Poisson equation, Ostrogradsky equation, moving end problems, Rayleigh-Ritz method, Galerkin's method and Kantorovich method of solving differential equations. | 10                             |  |  |  |
| 3.                          | Integral<br>equations                                             | Integral equations of Fredholm and Volterra type, Conversion from IVP and BVP. Solution by successive substitution and successive approximation, integral equations with degenerate kernels. Fredholm's theorems, integral equations with symmetric kernel, eigenvalues and eigenfunctions of integral equations and their simple properties.                                                                                                | 10                             |  |  |  |
| 4.                          | Applications of integral equations                                | Longitudinal vibrations of the rod, deformation of a rod, Green's function, influence function, construction of Green's function when the boundary value problem contains a parameter, Abel integral equation, weakly singular kernel, iteration of the singular equation.                                                                                                                                                                   | 8                              |  |  |  |
| 5.                          | Integral<br>transform<br>methods                                  | Introduction, Laplace transform, properties of the Laplace transform, application to Volterra integral equation, Fourier transform, application of Fourier transform, introduction to Hankel and Mellin transform, Fox's integral equation.                                                                                                                                                                                                  | 8                              |  |  |  |
|                             |                                                                   | Total number of lectures                                                                                                                                                                                                                                                                                                                                                                                                                     | 42                             |  |  |  |
| Evaluation                  | on Criteria                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |  |  |  |
| Compone<br>T1               | ents                                                              | Maximum Marks<br>20                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |  |  |  |
| T2                          |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |  |  |  |
| End Semester Examination 35 |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |  |  |  |
| TA<br><b>Total</b>          |                                                                   | 25 (Quiz, Assignments, Tutorials) <b>100</b>                                                                                                                                                                                                                                                                                                                                                                                                 |                                |  |  |  |

**Project based learning:** Students will be divided in the group of 2-3 students to collect the literature and explore the application of variational problems with fixed and moving boundaries and integral equations.

**Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) L. Elsegolc, Calculus of Variation, Dover Publications, 2010. 1. I. M. Gelf and, S.V. Fomin, Calculus of Variations, Prentice Hall, 2012. 2. **R. P. Kenwal,** Linear Integral Equation; Theory and Techniques, Academic Press, 1971. 3. F. B. Hildebrand, Methods of Applied Mathematics, Dover Publications, 1992. 4. S. Pal and S. C. Bhunia, Engineering Mathematics, Oxford University Press, 2015. 5. I. G. Petrovsky, Lectures on the Theory of Integral Equations, Mir Publishers, Moscow, 6. L. Debnath and D. Bhatta, Integral Transforms and Their Applications, Chapman and 7. Hall/CRC, 2006.

### **CO-PO-PSO Mapping**

|        | PO1  | PO2  | PO3  | PSO1 |
|--------|------|------|------|------|
| C114.1 | 1    | -    | -    | 1    |
| C114.2 | 2    | 2    | -    | 2    |
| C114.3 | 2    | 2    | 1    | 2    |
| C114.4 | 3    | 3    | 1    | 2    |
| Avg    | 2.00 | 1.75 | 1.00 | 1.75 |

## Linear Algebra (19M21MA116)

| Course<br>Code | 19M21MA116                                                               | Semester: Even | Semester II Session 2024-25 Month from Jan - May 2025 |  |  |  |
|----------------|--------------------------------------------------------------------------|----------------|-------------------------------------------------------|--|--|--|
| Course<br>Name | Linear Algebra                                                           |                |                                                       |  |  |  |
| Credits        | 4                                                                        | Contact Hours  | 3-1-0                                                 |  |  |  |
| Faculty        | Coordinator(s)                                                           |                |                                                       |  |  |  |
| (Names)        | Teacher(s)<br>(Alphabetically)                                           |                |                                                       |  |  |  |
| COURSE         | COURSE OUTCOMES COGNITIVE LEVELS                                         |                |                                                       |  |  |  |
| After purs     | After pursuing the above-mentioned course, the students will be able to: |                |                                                       |  |  |  |

| C120.1                                                                                       |                                                                                                                                                                                                                                            | of vector spaces, linear transformation, and inner product spaces.                            | Understanding (C2) |  |  |  |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------|--|--|--|
| C120.2                                                                                       | 11 0                                                                                                                                                                                                                                       | of vector spaces and linear solving related problems                                          | Applying (C3)      |  |  |  |
| C120.3                                                                                       |                                                                                                                                                                                                                                            | solve the problems based on invariant subspaces, matrix exponential, and inner product spaces |                    |  |  |  |
| C120.4                                                                                       | examine canonica                                                                                                                                                                                                                           | l forms, orthogonality and operators                                                          | Analyzing (C4)     |  |  |  |
| Module<br>No.                                                                                | Title of the<br>Module                                                                                                                                                                                                                     | <del>-</del>                                                                                  |                    |  |  |  |
| 1.                                                                                           | Vector spaces  Vector space, subspace, elementary properties of vector spaces, sum of subspaces, linear combination, linear dependence and independence, basis and dimension, ordered bases and coordinates                                |                                                                                               | 10                 |  |  |  |
| 2.                                                                                           | Linear transformation  Basic definitions, null space and range space, rank-nullity theorem, matrix of linear transformation, change of basis, linear functional, dual spaces, dual basis.                                                  |                                                                                               | 10                 |  |  |  |
| 3.                                                                                           | Canonical forms  Eigenvalues and eigenvectors, eigen space, minimal polynomial, The Cayley-Hamilton theorem, diagonalisation, invariant subspaces, Jordan canonical representation, norm of a matrix, computation of a matrix exponential. |                                                                                               | 10                 |  |  |  |
| 4.                                                                                           |                                                                                                                                                                                                                                            |                                                                                               | 12                 |  |  |  |
|                                                                                              | Total number of lectures 42                                                                                                                                                                                                                |                                                                                               |                    |  |  |  |
|                                                                                              | on Criteria                                                                                                                                                                                                                                |                                                                                               |                    |  |  |  |
| ComponentsMaximum MarksT120T220End Semester Examination35TA25 (Quiz, Assignments, Tutorials) |                                                                                                                                                                                                                                            |                                                                                               |                    |  |  |  |

Project based learning: Each student in a group of 2-3 will collect literature on canonical forms and inner product space to solve some practical problems. To make the subject application based, the students analyze to deal with afore mentioned topics.

**Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

100

**Total** 

1. K. Hoffman and R. Kunze, Linear Algebra 2nd Ed., Prentice Hall of India, 2015.

| 2. | V. Krishnamurty, V. P. Mainra and J. L. Arora, An introduction to Linear Algebra, Affilated East-West, 1976. |
|----|--------------------------------------------------------------------------------------------------------------|
| 3. | <b>G. Strang,</b> Linear Algebra and its applications, 6 <sup>th</sup> Ed., Cambridge Press, 2023.           |
| 4. | H. Anton and C. Rorres, Elementary linear algebra, 11th Ed., Wiley, 2016.                                    |
| 5. | <b>G. H. Golub and C. F. V Loan,</b> Matrix Computations, 3rd Ed., Hindustan Book Agency, 2007.              |

|        | PO1  | PO2  | PO3  | PSO1 |
|--------|------|------|------|------|
| C120.1 | 2    | 1    | -    | 1    |
| C120.2 | 3    | 2    | -    | 2    |
| C120.3 | 3    | 2    | -    | 2    |
| C120.4 | 3    | 2    | 1    | 3    |
| Avg    | 2.75 | 1.75 | 1.00 | 2.00 |

# **Mathematical Statistics (19M21MA211)**

| Course (  | Code                                   | 19M21N                                                                                                    | /A211                                                  |                        |                          |           | on 2024-25<br>25- June 2025                     |                     |
|-----------|----------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------|--------------------------|-----------|-------------------------------------------------|---------------------|
| Course N  | Name                                   | Mathema                                                                                                   | atical Stati                                           | stics                  |                          |           |                                                 |                     |
| Credits   |                                        | 4                                                                                                         |                                                        |                        | Contact                  | Hours     | 3-1-0                                           |                     |
| Faculty   |                                        | Coordi                                                                                                    | nator(s)                                               | XXXX                   |                          |           |                                                 |                     |
| (Names)   |                                        | Teacher<br>(Alphab                                                                                        | e(s)<br>etically)                                      | XXXX                   |                          |           |                                                 |                     |
| COURSI    | E OUTO                                 | COMES                                                                                                     |                                                        |                        |                          |           |                                                 | COGNITIVE<br>LEVELS |
| After pur | suing th                               | e above m                                                                                                 | entioned c                                             | course, the stud       | ents will b              | e able to | :                                               |                     |
| CO1       | recall<br>estima                       |                                                                                                           | ncepts of                                              | random vari            | ables, sar               | npling a  | and parameter                                   | Remembering (C1)    |
| CO2       | explain<br>analys                      | •                                                                                                         | of paramete                                            | er estimation, l       | hypothesis               | testing   | and regression                                  | Understanding (C2)  |
| CO3       | 11.                                    | •                                                                                                         |                                                        | variables and s        | 1 0                      | n parame  | ter estimation,                                 | Applying (C3)       |
| CO4       |                                        |                                                                                                           | ation para<br>ypothesis                                | ameters using testing. | the tech                 | nniques   | of parameter                                    | Analyzing (C4)      |
| Module    | Title o                                |                                                                                                           | Topics in                                              | n the Module           |                          |           |                                                 | No. of Lectures     |
| No.       | Modu                                   |                                                                                                           |                                                        |                        |                          |           |                                                 | for the module      |
| 1.        | Probab<br>Theory<br>randor<br>variable | y and 1D Probability Space, discrete and continuous random variables, expectation, mean, variance, moment |                                                        |                        |                          | 4         |                                                 |                     |
| 2.        | Bivaria<br>randor<br>variab            | m Discrete and continuous random variables, joint, marginal                                               |                                                        |                        |                          | 5         |                                                 |                     |
| 3.        | Probab<br>distrib                      | •                                                                                                         |                                                        |                        |                          | 6         |                                                 |                     |
| 4.        | Theory sampli                          |                                                                                                           | of Sampling theory, random sampling, Sample moments, 5 |                        |                          |           |                                                 | 5                   |
| 5.        | Point estima                           | tion                                                                                                      | efficiency                                             | -                      | likelihood<br>inequality | estimato  | s, consistency,<br>or, method of<br>mly minimum | 6                   |

| 6. | Interval             | Confidence interval, pivotal quantity, interval estimators                                                                                        | 4  |
|----|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | estimation           | for population parameters.                                                                                                                        |    |
| 7. | Hypothesis testing   | Null and alternative hypothesis, type I and type –II error, analysis of discrete data and Chi-square test of goodness of fit, large sample tests. | 5  |
| 8. | Analysis of variance | One way of analysis with equal and unequal sample size, tests for the homogeneity of variances.                                                   | 4  |
| 9. | Linear<br>Regression | Regression curve and scedastic curves, simple linear regression, least square method, likelihood method.                                          | 3  |
|    |                      | Total number of lectures                                                                                                                          | 42 |

| Components               | Maximum Marks                          |
|--------------------------|----------------------------------------|
| T1                       | 20                                     |
| T2                       | 20                                     |
| End Semester Examination | 35                                     |
| TA                       | 25 (Quiz, Assignments, Tutorials, PBL) |
| Total                    | 100                                    |

**Project based learning:** Students in small groups will collect sample data set and make regression models. They will validate and analyze the model by hypothesis testing and ANOVA. By this students will be able to make regression models.

**Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- **1. A. M. Mood, F. A. Graybill and D. C. Boes,** Introduction to the theory of statistics, 3<sup>rd</sup> Indian Ed., Mc Graw Hill, 2001.
- 2. R. V. Hogg and A. T. Craig, Introduction to mathematical Statistics, Mc-Millan, 1995.
- 3. V. K. Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, Wiley Eastern, 1984.
- **4. S. M. Ross,** A First Course in Probability, 6th edition, Pearson Education Asia, 2002.
- 5. S. Palaniammal, Probability and Random Processes, PHI Learning Private Limited, 2012.
- **6. P. L. Mayer,** Introductory Probability and Statistical Applications, Addison-Wesley, Second Edition, 1972.
- 7. R. E. Walpole, R H. Myers, S. L. Myers, and K. Ye, Probability & Statistics for Engineers & Scientists, 9<sup>th</sup> edition, Pearson Education Limited, 2016.
- **8. I. Miller and M. Miller, John E. Freund's** Mathematical Statistics with Applications, 8th Edition, Pearson Education Limited 2014.

|     | PO1 | PO2 | PO3 | PSO1 |
|-----|-----|-----|-----|------|
| CO1 | 3   | 2   | 1   | 2    |

| CO2 | 3    | 2    | 1    | 2    |
|-----|------|------|------|------|
| CO3 | 3    | 2    | 3    | 2    |
| CO4 | 3    | 2    | 3    | 2    |
| Avg | 3.00 | 2.00 | 2.00 | 2.00 |

# Functional Analysis (19M21MA119)

| Course C      | rse Code 19M21MA119 Semester Even Semester II Se<br>Month from Jan |                                                                                                                                                                                                        |              |                 |                                |           |                         |                     |
|---------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|--------------------------------|-----------|-------------------------|---------------------|
| Course N      | ame                                                                | Functional Analysis                                                                                                                                                                                    |              |                 |                                |           |                         |                     |
| Credits       |                                                                    | 4                                                                                                                                                                                                      |              |                 | Contact                        | Hours     | 3-1-0                   |                     |
| Faculty       |                                                                    | Coordinator                                                                                                                                                                                            | <b>:</b> (s) |                 |                                |           |                         |                     |
| (Names)       |                                                                    | Teacher(s)<br>(Alphabetica                                                                                                                                                                             | lly)         |                 |                                |           |                         |                     |
| COURSE        | E OUT                                                              | COMES                                                                                                                                                                                                  |              |                 |                                |           |                         | COGNITIVE<br>LEVELS |
| After purs    | suing th                                                           | e above mentio                                                                                                                                                                                         | ned c        | ourse, the stud | ents will b                    | e able to | :                       |                     |
| C123.1        | basis a                                                            | n metric space<br>and their prope                                                                                                                                                                      | rties.       |                 | _                              |           |                         | Understanding (C2)  |
| C123.2        |                                                                    | use of the con-<br>mental theorem                                                                                                                                                                      |              |                 |                                | paces to  | prove the               | Applying (C3)       |
| C123.3        | operat                                                             | basic theoretic<br>fors on normed<br>g the related pr                                                                                                                                                  | space        | es and develop  |                                |           |                         | Applying (C3)       |
| C123.4        |                                                                    | ne the fundame applications.                                                                                                                                                                           | nental       | theorems of     | functional                     | analysis  | for their               | Analyzing (C4)      |
| Module<br>No. | Title o<br>Modu                                                    | of the ule Topics in the Module                                                                                                                                                                        |              |                 | No. of Lectures for the module |           |                         |                     |
| 1.            |                                                                    | ned spaces and ch space I Review of H inequality and $v$ and $L_p$ spaces, subspace of Ban                                                                                                             |              |                 | or spaces or spaces            | with exar | nples to l <sub>p</sub> | 5                   |
| 2.            |                                                                    | rmed spaces and hach space II  Finite dimensional normed subspaces. Linear operators, both continuous linear operators, their properties related results.                                              |              |                 | rs, bour                       |           | 7                       |                     |
| 3.            | theore                                                             | Principle of uniform boundedness, boundedness and continuity of linear transformations, Hahn-Banach theorem, open mapping theorem, closed graph theorem.                                               |              |                 | 6                              |           |                         |                     |
| 4.            |                                                                    | Inner product spaces, Schwarz and Minkowski inequalities, Hilbert spaces, relation between Banach and Hilbert spaces, projections, orthonormal basis, Reisz-representation theorem.                    |              |                 | 8                              |           |                         |                     |
| 5.            | Space                                                              | nner Product Spaces and Hilbert paces II  Convex sets, existence and uniqueness of a vector of minimum length, projection theorem, orthogonal and orthonormal systems in Hilbert spaces with examples. |              |                 | 8                              |           |                         |                     |

| 6. | Inner product<br>spaces and Hilbert<br>spaces III | Bessel's inequality, Parseval's identity, characterization of complete orthonormal systems. | 4  |
|----|---------------------------------------------------|---------------------------------------------------------------------------------------------|----|
| 7. | Banach fixed point theorem                        | Contraction mapping, Banach fixed point theorem and its applications.                       | 4  |
|    |                                                   | Total number of lectures                                                                    | 42 |

| Components               | Maximum Marks                          |
|--------------------------|----------------------------------------|
| T1                       | 20                                     |
| T2                       | 20                                     |
| End Semester Examination | 35                                     |
| TA                       | 25 (Quiz, Assignments, PBL, Tutorials) |
| Total                    | 100                                    |

**Project based learning:** Students will be divided in groups of 3-4 students to explore the applications of the fundamental theorems of functional analysis such as uniform boundedness theorem, Hahn-Banach theorem, fixed point theorem etc in solving various related problems.

**Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons, Inc., 2011.
- 2. W. Rudin, Functional Analysis, 2<sup>nd</sup> Edition, Mc-Graw Hill, 2018.
- **3. G. F. Simmons,** Introduction to Topology and Modern Analysis, 2<sup>nd</sup> revised and updated edition, Affiliated Est-West Press New Delhi, 2024.
- **4. A. H. Siddiqi, K. Ahmad and P. Manchanda**, Introduction to Functional Analysis with Applications, Anamaya Publication, New Delhi, 2006.
- **5. L. Debnath and P. Mikusinski**, Introduction to Hilbert spaces with Applications, 3rd Edition, Elsevier, 2010.
- **6. G. Bachman and L. Narici,** Functional Analysis, Dover Publication, 2012
- 7. M. T. Nair, Functional Analysis: A First Course, 2<sup>nd</sup> Edition PHI India, 2021.

|        | PO1  | PO2  | PO3  | PSO1 |
|--------|------|------|------|------|
| C111.1 | 2    | 1    | -    | 1    |
| C111.2 | 3    | 2    | -    | 2    |
| C111.3 | 3    | 2    | -    | 2    |
| C111.4 | 3    | 2    | 1    | 3    |
| Avg    | 2.75 | 1.75 | 1.00 | 2.00 |

# **Partial Differential Equations (19M21MA120)**

| Course Co                 | Course Code 19M21MA120 Semester Even Semester II Ses<br>Month from Jan -                                                                                                                                               |                                                                                                                             |                                                                                                                                                  |                                |                     |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|--|
| Course Name Partial Diffe |                                                                                                                                                                                                                        |                                                                                                                             | al Equations                                                                                                                                     |                                |                     |  |
| Credits                   | 4                                                                                                                                                                                                                      | 1                                                                                                                           | Contact Hours                                                                                                                                    |                                | 3- 1- 0             |  |
| Faculty                   |                                                                                                                                                                                                                        | Coordinator(s)                                                                                                              | Dr. Pato Kumari                                                                                                                                  |                                |                     |  |
| (Names)                   |                                                                                                                                                                                                                        | Геаcher(s)<br>(Alphabetically)                                                                                              | Dr. Pato Kumari                                                                                                                                  |                                |                     |  |
| COURSE                    | OUTC                                                                                                                                                                                                                   | COMES                                                                                                                       | ·                                                                                                                                                |                                | COGNITIVE<br>LEVELS |  |
| After pursu               | uing the                                                                                                                                                                                                               | e above-mention                                                                                                             | ed course, the students will l                                                                                                                   | be able to:                    |                     |  |
| C124.1                    | _                                                                                                                                                                                                                      | •                                                                                                                           | ial differential equations (Pand Fourier series.                                                                                                 | DE), classification            | Understanding (C2)  |  |
| C124.2                    | identi                                                                                                                                                                                                                 | ify boundary va                                                                                                             | lue problems and solve L                                                                                                                         | aplace equation.               | Applying (C3)       |  |
| C124.3                    | make                                                                                                                                                                                                                   | make use of Fourier transforms to solve PDE. App                                                                            |                                                                                                                                                  |                                |                     |  |
| C124.4                    |                                                                                                                                                                                                                        | analyze problems related to heat equation and wave equation in cylindrical and spherical polar coordinates.  Analyzing (C4) |                                                                                                                                                  |                                |                     |  |
| Module<br>No.             | Title of the Module Module                                                                                                                                                                                             |                                                                                                                             |                                                                                                                                                  | No. of Lectures for the module |                     |  |
| 1                         | First-<br>Partia<br>Differ<br>Equat<br>(PDE                                                                                                                                                                            | rential equitions characters (Ss)                                                                                           | mation and classifications, linear semi-linear ations, Cauchy problemateristics, nonlinear fuplete integrals, commange method for first ordehod. | 10                             |                     |  |
| 2                         | Fourier Series  Introduction to Fourier series, convergence of Fourier series for continuous and piecewise continuous functions, Fourier cosine and sine series, Fourier transform, Fourier sine and cosine transform. |                                                                                                                             |                                                                                                                                                  | 5                              |                     |  |
| 3                         | Secor<br>PDEs                                                                                                                                                                                                          | diff                                                                                                                        | ssification of second-or<br>erential equations into hy<br>elliptic PDEs, reduction t                                                             | 3                              |                     |  |

| 4 | Laplace's<br>Equation                       | Basic concepts, types of boundary value problems, the maximum and minimum principle, the method of separation of variables, the Dirichlet problem for the rectangle, the Dirichlet problem for annuli and disk, solution of Laplace equation in cylindrical and spherical polar coordinates. | 8  |
|---|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5 | Heat<br>Equation                            | Derivation of the heat equation, maximum and minimum principles, uniqueness, continuous dependence, method of separation of variables, solution of heat equation in cylindrical and spherical polar coordinates.                                                                             | 6  |
| 6 | Wave<br>Equation                            | Derivation of the wave equation, infinite string problem, D'Alembert solution of the wave equation, semi-infinite string problem, finite vibrating string problem, method of separation of variables, inhomogeneous wave equation, Duhamel's principle.                                      | 7  |
| 7 | Fourier<br>transform<br>methods for<br>PDEs | Fourier transform methods for heat flow problem in an infinite and semi-infinite rod, Infinite string problem, Laplace equation in a half-plane.                                                                                                                                             | 3  |
|   |                                             | Total number of lectures                                                                                                                                                                                                                                                                     | 42 |

| Components               | Maximum Marks                          |
|--------------------------|----------------------------------------|
| T1                       | 20                                     |
| T2                       | 20                                     |
| End Semester Examination | 35                                     |
| TA                       | 25 (Quiz, Assignments, Tutorials, PBL) |
| Total                    | 100                                    |

**Project based learning:** Each student in a group of 3-4 will apply the concepts of Laplace's equation, Heat equation, Wave equation to solve some field problems.

**Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

| 1. | Sneddon, I. N., Elements of Partial Differential Equations, Hassell Street Press, 2021.           |
|----|---------------------------------------------------------------------------------------------------|
| 2. | John, F., Partial Differential Equations, Springer New York, 2013.                                |
| 3. | Strauss, W. A., Partial Differential Equations: An Introduction, 2 <sup>nd</sup> ed, Wiley, 2012. |
| 4. | Willams, W. E., Partial Differential Equations, Clarendon Press, 2010.                            |
| 5. | Evans, L. C., Partial Differential Equations, AMS, 1998.                                          |
| 6. | McOwen, R., Partial Differential Equations, Pearson, 2002.                                        |

**Powers, D. L.,** Boundary Value Problems and Partial Differential Equations, 5<sup>th</sup> Ed., Academic Press, 2006.

### **CO-PO-PSO Mapping**

|        | PO1  | PO2  | PO3  | PSO1 |
|--------|------|------|------|------|
| C124.1 | 3    | 1    | -    | 1    |
| C124.2 | 3    | 2    | -    | 2    |
| C124.3 | 3    | 2    | -    | 2    |
| C124.4 | 3    | 2    | 1    | 3    |
| Avg.   | 3.00 | 1.75 | 1.00 | 2.00 |

# **Computer Programming (19M21MA118)**

| Course C      | ode              | 19M21MA                                                                                                                                                                                                         | 118      | Semester Even Semester II Session 2024-25<br>Month from Jan - May 2025 |             |                                |                |                     |
|---------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------|-------------|--------------------------------|----------------|---------------------|
| Course N      | ame              | Computer P                                                                                                                                                                                                      | rogram   | ming                                                                   |             | <u> </u>                       |                |                     |
| Credits       |                  | 3                                                                                                                                                                                                               |          | Contact Hours 3-0-0                                                    |             |                                |                |                     |
| Faculty       |                  | Coordinate                                                                                                                                                                                                      | or(s)    |                                                                        |             |                                | 1              |                     |
| (Names)       |                  | Teacher(s)<br>(Alphabetic                                                                                                                                                                                       | cally)   |                                                                        |             |                                |                |                     |
| COURSE        | E OUT            | COMES                                                                                                                                                                                                           |          |                                                                        |             |                                |                | COGNITIVE<br>LEVELS |
| After purs    | suing the        | e above-ment                                                                                                                                                                                                    | ioned c  | ourse, the stud                                                        | ents will b | e able to                      | :              |                     |
| C122.1        | explai           | n fundamenta                                                                                                                                                                                                    | als of p | rogramming.                                                            |             |                                |                | Understanding (C2)  |
| C122.2        | apply            | structures and                                                                                                                                                                                                  | d functi | ons in progran                                                         | nming.      |                                |                | Applying (C3)       |
| C122.3        | make             | te use of function overloading and pointers in programming.  Applying (C3)                                                                                                                                      |          |                                                                        |             |                                |                | Applying (C3)       |
| C122.4        | analyz<br>progra | alyze the problems using the concepts of object-oriented ogramming.  Analyzing (C4)                                                                                                                             |          |                                                                        |             |                                | Analyzing (C4) |                     |
| Module<br>No. |                  | Topics in the Module  Topics in the Module                                                                                                                                                                      |          |                                                                        |             | No. of Lectures for the Module |                |                     |
| 1.            |                  | asic Computer undamentals  Introduction to computer systems; number system, integer, signed integer, fixed and floating-point representations; integer and floating-point arithmetic, expression and operators. |          |                                                                        |             |                                | 5              |                     |

| 2. | Basics of<br>Programming                              | Input/output; Constants, variables, expressions and operators; Naming conventions and styles; Conditions and selection statements; Looping and control structures (while, for, do-while, break and continue); Arrays; File I/O, header files, string processing; Pre-processor directives.                                                                              | 10 |
|----|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3. | Programming<br>through<br>functional<br>decomposition | Structures; design of functions, void and value returning functions, parameters, scope and lifetime of variables, passing by value, passing by reference, passing arguments by constant reference, recursive functions; Function overloading and default arguments; Library functions.                                                                                  | 10 |
| 4. | Pointers                                              | Pointers; Dynamic data and pointers, dynamic arrays.                                                                                                                                                                                                                                                                                                                    | 5  |
| 5. | Object Oriented<br>Programming<br>Concepts            | Data hiding, abstract data types, classes, access control; Class implementation-default constructor, constructors, copy constructor, destructor, operator overloading, friend functions; Object oriented design (an alternative to functional decomposition) inheritance and composition; Dynamic binding and virtual functions; Polymorphism; Dynamic data in classes. | 12 |
|    |                                                       | Total number of lectures                                                                                                                                                                                                                                                                                                                                                | 42 |

| Components               | Maximum Marks               |
|--------------------------|-----------------------------|
| T1                       | 20                          |
| T2                       | 20                          |
| End Semester Examination | 35                          |
| TA                       | 25 (Quiz, Assignments, PBL) |
| Total                    | 100                         |

**Project based learning:** A group of 2 to 3 students will be formed. Each group will have a group leader to develop coordination among the group members. Each group will be assigned a project based on programming skills. The group leader of each group will submit a report of 6-7 pages and then finally each member of the group will be evaluated through a viva voce.

**Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. Lafore R., Object-Oriented Programming in C++. Sams Publishing, 4th edition, 2017.
- 2. Stroustrup, B., The C++ Programming Language. Addison-Wesley, 4th edition, 2013.
- 3. Deitel, H.M. and Deitel, P.J., C++ How to Program. Prentice Hall, 8th edition, 2011.
- **4. Schildt, H.,** C++: The Complete Reference. McGraw-Hill, 4th Ed., 2002.
- **5. Lippman, S. B. and Lajoie, J. and Moo, B.E.,** The C++ Primer. Addison-Wesley Professional, 5th Ed., 2012.

|        | PO1 | PO2 | PO3 | PSO1 |
|--------|-----|-----|-----|------|
| C122.1 | 2   | 1   | -   | 1    |

| C122.2 | 2    | 2    | -    | 2    |
|--------|------|------|------|------|
| C122.3 | 3    | 2    | -    | 2    |
| C122.4 | 3    | 3    | 1    | 2    |
| AVG    | 2.50 | 2.00 | 1.00 | 1.75 |

# **Computer Programming Lab (19M25MA111)**

| Course C      | Code                                                                                                                         | 19M25MA1                                                                                 | 111                 | Semester                                 | Even        | Semester II Session 2024-25<br>Month from Jan - May 2025 |          |                     |
|---------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------|------------------------------------------|-------------|----------------------------------------------------------|----------|---------------------|
| Course N      | lame                                                                                                                         | Computer l                                                                               | Progra              | mming Lab                                |             |                                                          |          |                     |
| Credits       |                                                                                                                              | 1                                                                                        | Contact Hours 0-0-2 |                                          |             |                                                          |          |                     |
| Faculty       |                                                                                                                              | Coordinate                                                                               | or(s)               |                                          |             |                                                          |          |                     |
| (Names)       | (Names) Teacher(s) (Alphabetically)                                                                                          |                                                                                          |                     |                                          |             |                                                          |          |                     |
| COURSE        | E OUTC                                                                                                                       | COMES                                                                                    |                     |                                          |             |                                                          |          | COGNITIVE<br>LEVELS |
| After purs    | suing the                                                                                                                    | e above-ment                                                                             | ioned c             | ourse, the stud                          | ents will b | e able to                                                | <b>:</b> |                     |
| C170.1        | demon                                                                                                                        | demonstrate the use of the concepts of fundamentals of programming.                      |                     |                                          |             |                                                          |          | Understanding (C2)  |
| C170.2        | develo                                                                                                                       | velop programs using arrays, structures and functions.                                   |                     |                                          |             |                                                          |          | Applying (C3)       |
| C170.3        |                                                                                                                              | nmine function overloading, recursive function and pointers for namic memory allocation. |                     |                                          |             |                                                          |          | Analyzing (C4)      |
| C170.4        |                                                                                                                              | nalyse the programs using various concepts of object oriented organization               |                     |                                          |             |                                                          |          | Analyzing (C4)      |
| Module<br>No. | Title o                                                                                                                      |                                                                                          | List o              | f Experiments                            | S           |                                                          |          |                     |
| 1.            | Basic Computer Fundamentals  Write programs in C++ to understand the arithmetic operators, logical and relational operators. |                                                                                          |                     |                                          |             |                                                          |          |                     |
| 2.            | _                                                                                                                            | amming<br>tatements                                                                      |                     |                                          |             |                                                          |          |                     |
| 3.            | Basic<br>Progra                                                                                                              | amming<br>oops                                                                           | execu               | e programs<br>ution through<br>hile etc. |             |                                                          |          |                     |

| 4   | TT C1           | XX : C C I X : 1 (1 )                                       |  |
|-----|-----------------|-------------------------------------------------------------|--|
| 4.  | Use of loops    | Write C++ programs for n!, $e^x$ , $\sin x$ , $\log(1+x)$ . |  |
|     | and statements  |                                                             |  |
| 5.  | Arrays and      | Write C++ programs using 1D and 2D arrays                   |  |
|     | strings         | like Sorting of arrays, Matrix multiplication.              |  |
|     | Strings         |                                                             |  |
|     |                 | Strings.                                                    |  |
| 6.  | Structures      | Write C++ programs of time and distance                     |  |
|     |                 | structures                                                  |  |
| 7.  | Functions       | Write C++ programs using functions for Matrix               |  |
|     |                 | multiplication, HCF of two numbers, factorial,              |  |
|     |                 | •                                                           |  |
|     |                 | etc.                                                        |  |
| 8.  | Functions       | Write programs in C++ using call by value,                  |  |
|     |                 | reference, recursive functions, function                    |  |
|     |                 | overloading.                                                |  |
| 9.  | Pointers        | Write programs in C++ for handling addressing               |  |
|     |                 | through pointers.                                           |  |
| 1.0 |                 |                                                             |  |
| 10. | Object oriented | Write programs in C++ using OOPs concepts                   |  |
|     | programming     | like Object and classes, Constructor,                       |  |
|     | Concepts        | Destructors.                                                |  |
| 11. | Object oriented | Write program of Complex class. Use of                      |  |
|     | programming     | Operator overloading, Friend functions.                     |  |
|     | Concepts        | operator o contouring, ritema randulono.                    |  |
|     | •               |                                                             |  |
| 12. | Object oriented | Write programs in C++ showing the application               |  |
|     | programming     | of Inheritance.                                             |  |
|     | Concepts        |                                                             |  |

| Components | Maximum Marks                       |
|------------|-------------------------------------|
| Lab Test 1 | 20                                  |
| Lab Test 2 | 20                                  |
| TA         | 60 (Quiz, Assignments, Tests, Viva) |
| Total      | 100                                 |

**Project based learning:** A group of 2 to 3 students will be formed. Each group will have a group leader to develop coordination among the group members. Each group will be assigned a project based on its commercial and general applications illustrating the programming skills. The group leader of each group will submit a report of 5-6 pages and then finally each member of the group will be evaluated through a viva voce.

**Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- **1. Lafore R.,** Object-Oriented Programming in C++. Sams Publishing, 4th edition, 2017.
- 2. Stroustrup, B., The C++ Programming Language. Addison-Wesley, 4th edition, 2013.
- **3. Deitel, H.M. and Deitel, P.J.,** C++ How to Program. Prentice Hall, 8th edition, 2011.
- **4. Schildt, H.,** C++: The Complete Reference. McGraw-Hill, 4th Ed., 2002.
- **Lippman, S. B. and Lajoie, J. and Moo, B.E.,** The C++ Primer. Addison-Wesley Professional, 5th Ed., 2012.

# **CO-PO-PSO Mapping:**

|        | PO1  | PO2  | PO3  | PSO1 |
|--------|------|------|------|------|
| C170.1 | 2    | 2    | -    | 2    |
| C170.2 | 3    | 3    | -    | 2    |
| C170.3 | 3    | 2    | 1    | 2    |
| C170.4 | 3    | 2    | 1    | 2    |
| AVG    | 2.75 | 2.25 | 1.00 | 2.00 |

# Advanced Matrix Theory (20M22MA211)

|               |                                        |                                                                                                                                                                   | T               |              | li .            |   |                                |
|---------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|-----------------|---|--------------------------------|
| Course C      | Code 2                                 | 20M22MA211                                                                                                                                                        | Semester        | Even         | Semest<br>Month |   | sion 2024-25<br>025- June 2025 |
| Course N      | Jame A                                 | Advanced Matrix                                                                                                                                                   | Theory          |              |                 |   |                                |
| Credits       | 3                                      | Contact Hours 3-0-0                                                                                                                                               |                 |              |                 |   |                                |
| Faculty       |                                        | Coordinator(s)                                                                                                                                                    |                 |              |                 |   |                                |
| (Names)       |                                        | Teacher(s)<br>Alphabetically)                                                                                                                                     |                 |              |                 |   |                                |
| COURSI        | E OUTCO                                | OMES                                                                                                                                                              |                 |              |                 |   | COGNITIVE<br>LEVELS            |
| After pur     | suing the a                            | above-mentioned                                                                                                                                                   | course, the stu | dents will b | e able to       | : |                                |
| C230.1        | explain                                | xplain vector spaces, inner product spaces and matrix norms.  Unders (C2)                                                                                         |                 |              |                 |   |                                |
| C230.2        |                                        | ply the process of orthonormalization in QR decomposition and pansion of functions.  Applying (C3)                                                                |                 |              |                 |   |                                |
| C230.3        |                                        | e system of linear entive methods.                                                                                                                                | Applying (C3)   |              |                 |   |                                |
| C230.4        |                                        | systems of differ<br>al systems using n                                                                                                                           | Analyzing (C4)  |              |                 |   |                                |
| Module<br>No. | Title of<br>Module                     | the Topics in th                                                                                                                                                  | ne Module       |              |                 |   | No. of Lectures for the module |
| 1.            | Linear<br>System equation              | em of equations, LU- decomposition methods, Crout's and                                                                                                           |                 |              |                 | 7 |                                |
| 2.            | Normed<br>and Inn<br>Product<br>Spaces | p-norms of a vector, norms of a matrix, condition number, Orthogonal matrices, QR factorization, expansion in terms of orthogonal basis—Fourier series orthogonal |                 |              |                 |   | 10                             |

| 3    | Eigen<br>value<br>Problems                                                                              | valueGreshgorin's theorem, Power and Inverse power methods<br>eigen system of a Hermitian matrix, Singular Values and<br>Singular Value Decomposition. |                   |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|
| 4    | Matrix<br>Calculus                                                                                      | 10 Wells will institute the manifest the prominent of                                                                                                  |                   |  |  |  |  |
|      |                                                                                                         | Total number of lectures                                                                                                                               | 42                |  |  |  |  |
| Eva  | luation Criteria                                                                                        |                                                                                                                                                        |                   |  |  |  |  |
|      | ponents                                                                                                 | <b>Maximum Marks</b>                                                                                                                                   |                   |  |  |  |  |
| T1   |                                                                                                         | 20                                                                                                                                                     |                   |  |  |  |  |
| T2   |                                                                                                         | 20                                                                                                                                                     |                   |  |  |  |  |
|      | Semester Examir                                                                                         |                                                                                                                                                        |                   |  |  |  |  |
| TA   | _                                                                                                       | 25 (Quiz, Assignments)                                                                                                                                 |                   |  |  |  |  |
| Tota | al                                                                                                      | 100                                                                                                                                                    |                   |  |  |  |  |
|      |                                                                                                         | ng: Each student in a group of 3-4 will apply the concept<br>em of differential equations related to some practical prob                               |                   |  |  |  |  |
|      |                                                                                                         | ing material: Author(s), Title, Edition, Publisher, Year or erence Books, Journals, Reports, Websites etc. in the IEE                                  |                   |  |  |  |  |
| 1.   |                                                                                                         | <b>G. B. Costa,</b> Matrix Methods: Applied Linear Algebra a lemic Press, 2020.                                                                        | and Sabermetrics, |  |  |  |  |
|      | R. Bronson, Matrix Methods an Introduction, Academic Press, 1991.                                       |                                                                                                                                                        |                   |  |  |  |  |
| 2.   | <b>G. H. Golub,</b> Matrix Computations, 4 <sup>th</sup> Edition, Johns Hopkins University Press, 2013. |                                                                                                                                                        |                   |  |  |  |  |
| 3.   | <b>K. B. Datta,</b> Matrix and Linear Algebra, 3 <sup>rd</sup> Edition, Prentice Hall of India, 2016.   |                                                                                                                                                        |                   |  |  |  |  |
| 4.   | 4. W. L. David, Matrix Theory, World Scientific, 1991.                                                  |                                                                                                                                                        |                   |  |  |  |  |
| 5.   | <b>8. A. Horn and C. R. Johnson</b> , Topics in Matrix Analysis, Cambridge University Press, 2013.      |                                                                                                                                                        |                   |  |  |  |  |
| 6.   | G. Strang, Linea                                                                                        | ar Algebra and its Applications, Thomson, Brooks/Cole,                                                                                                 | 2006.             |  |  |  |  |

|     | PO1 | PO2 | PO3 | PSO1 |
|-----|-----|-----|-----|------|
| CO1 | 3   | 2   | -   | 1    |
| CO2 | 3   | 2   | -   | 2    |
| CO3 | 3   | 2   | -   | 2    |

| CO4 | 3    | 2    | 1    | 3    |
|-----|------|------|------|------|
| Avg | 3.00 | 2.00 | 1.00 | 2.00 |

# Second Year

# Complex Analysis (19M21MA117)

| Course C      | ode             | 19M21MA1                                                       | 17                                             | Semester Oc                                                                                                                                                                                                                                                                                           | ld                                     | Semester III Session 2024-2025<br>Month from Jul- Dec 2024 |                                          |                     |
|---------------|-----------------|----------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------|------------------------------------------|---------------------|
| Course N      | ame             | Complex A                                                      | nalysis                                        |                                                                                                                                                                                                                                                                                                       |                                        |                                                            |                                          |                     |
| Credits       |                 | 4                                                              |                                                |                                                                                                                                                                                                                                                                                                       | Contact                                | Hours                                                      | 3-1-0                                    |                     |
| Faculty       |                 | Coordinate                                                     | or(s)                                          |                                                                                                                                                                                                                                                                                                       |                                        |                                                            |                                          |                     |
| (Names)       |                 | Teacher(s)<br>(Alphabetic                                      | cally)                                         |                                                                                                                                                                                                                                                                                                       |                                        |                                                            |                                          |                     |
| COURSE        | OUTO            | COMES                                                          |                                                |                                                                                                                                                                                                                                                                                                       |                                        |                                                            |                                          | COGNITIVE<br>LEVELS |
| After purs    | uing th         | e above ment                                                   | ioned c                                        | ourse, the stud                                                                                                                                                                                                                                                                                       | ents will b                            | e able to                                                  | :                                        |                     |
| C121.1        |                 |                                                                |                                                | of calculus of f                                                                                                                                                                                                                                                                                      |                                        | •                                                          |                                          | Understanding (C2)  |
| C121.2        | the rel         | lated problem                                                  | s.                                             | lex differentiat                                                                                                                                                                                                                                                                                      |                                        |                                                            |                                          | Applying (C3)       |
| C121.3        | solve residu    | the problems (<br>les.                                         | concerr                                        | nctions and                                                                                                                                                                                                                                                                                           | Applying (C3)                          |                                                            |                                          |                     |
| C121.4        | exami           | ine the problems of conformal mapping and contour integration. |                                                |                                                                                                                                                                                                                                                                                                       |                                        |                                                            |                                          | Analyzing (C4)      |
| Module<br>No. | Title o<br>Modu |                                                                | Topics in the Module                           |                                                                                                                                                                                                                                                                                                       |                                        |                                                            | No. of Lectures for the module           |                     |
| 1.            | Comp<br>Differ  | elex<br>rentiation                                             | functi<br>functi<br>analyt<br>trigon<br>logari | mit, continuity and differentiability, analytic actions, Cauchy Riemann equation, harmonic actions, harmonic conjugate, construction of alytic functions, exponential function, gonometric and inverse trigonometric functions, garithmic function, complex powers, branches of alti valued functions |                                        |                                                            | 12                                       |                     |
| 2.            | Comp<br>Integr  |                                                                | indepo<br>integra<br>inequa<br>theore<br>modul | implex line integral, Cauchy-Goursat theorem, dependence and deformation of path; Cauchy's tegral formulas and their consequences, Cauchy equality, Liouville's theorem, fundamental eorem of algebra, Morera's theorem, maximum odulus principle, Schwarz lemma, analytic intinuation.               |                                        |                                                            | 10                                       |                     |
| 3.            |                 | r Series and<br>larities                                       | zeros<br>classif<br>singul                     | or and Laurent<br>and singular<br>fication of<br>arity, poles, es<br>and at infinity,                                                                                                                                                                                                                 | ities of o<br>singular<br>sential sing | complex<br>rities:<br>gularities                           | functions,<br>removable<br>s, residue at | 12                  |

|      |                                                                                                                                                                                        | its applications in evaluation of real integrals: integration around unit circle, integration over semi-circular contours (with and without real poles), integration around rectangular contours. Argument principle, Rouche's theorem. |    |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| 4    | Conformal Transformations                                                                                                                                                              | Conformal transformations, bilinear transformations, critical points, fixed points, problems on cross-ratio and bilinear transformation                                                                                                 | 8  |  |  |  |  |
|      |                                                                                                                                                                                        | Total number of lectures                                                                                                                                                                                                                | 42 |  |  |  |  |
| Eval | luation Criteria                                                                                                                                                                       |                                                                                                                                                                                                                                         |    |  |  |  |  |
| Con  | ponents                                                                                                                                                                                | Maximum Marks                                                                                                                                                                                                                           |    |  |  |  |  |
| T1   |                                                                                                                                                                                        |                                                                                                                                                                                                                                         |    |  |  |  |  |
| T2   |                                                                                                                                                                                        | 20                                                                                                                                                                                                                                      |    |  |  |  |  |
|      | Semester Examination                                                                                                                                                                   | 35                                                                                                                                                                                                                                      |    |  |  |  |  |
| TA   | _                                                                                                                                                                                      | 25 (Quiz, Assignments, Tutorials)                                                                                                                                                                                                       |    |  |  |  |  |
| Tota | al                                                                                                                                                                                     | 100                                                                                                                                                                                                                                     |    |  |  |  |  |
|      | <b>Recommended Reading material:</b> Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) |                                                                                                                                                                                                                                         |    |  |  |  |  |
| 1.   | 1. Churchill, R. V. and Brown, J.W., Complex Variables and Applications, McGraw-Hill, 9 <sup>th</sup> edition, 2021.                                                                   |                                                                                                                                                                                                                                         |    |  |  |  |  |
| 2.   | Spiegel, M.R., Lipschutz, S, John J. S, Spellman, D. Complex Variables, Schaum's Outline, 2nd edition, 2009.                                                                           |                                                                                                                                                                                                                                         |    |  |  |  |  |
| 3.   | Ponnusam, S., Foundations of Complex Analysis, Narosa Publishing House, Second Edition, Reprint, 2022.                                                                                 |                                                                                                                                                                                                                                         |    |  |  |  |  |
| 4.   | Lang, S., Complex Analysis, Springer-Verlag, 1999.                                                                                                                                     |                                                                                                                                                                                                                                         |    |  |  |  |  |
| 5.   | Gamelin ,T.W., Complex Analysis, Springer-Verlag, 2001.                                                                                                                                |                                                                                                                                                                                                                                         |    |  |  |  |  |

## **CO-PO-PSO Mapping**

|        | PO1  | PO2  | PO3  | PSO1 |
|--------|------|------|------|------|
| C121.1 | 3    | 2    | -    | 1    |
| C121.2 | 3    | 2    | -    | 2    |
| C121.3 | 3    | 3    | -    | 2    |
| C121.4 | 3    | 3    | 1    | 2    |
| Avg    | 3.00 | 2.50 | 1.00 | 1.75 |

# Numerical Analysis (19M21MA212)

| Course Code | 19M21MA212 | Semester | Odd | Semester III | Session 2024-2025 |
|-------------|------------|----------|-----|--------------|-------------------|
|             |            |          |     | Month from   | Jul- Dec 2024     |

| Course          | Nome                | Numaria                   | ol Analysis | g                              |                                          |                        |                                |
|-----------------|---------------------|---------------------------|-------------|--------------------------------|------------------------------------------|------------------------|--------------------------------|
| Credits         |                     |                           | al Analysis | <b>S</b>                       | Contact Hours                            | 3                      |                                |
|                 |                     | 3                         |             |                                | Contact Hours                            | 3                      |                                |
| Faculty         |                     | Coordi                    |             |                                |                                          |                        |                                |
| (Names          | )                   | Teacher                   |             |                                |                                          |                        |                                |
|                 |                     | (Alphab                   | etically)   |                                |                                          |                        |                                |
| COURSE OUTCOMES |                     |                           |             |                                |                                          |                        | COGNITIVE<br>LEVELS            |
| After pu        | rsuing th           | e above m                 | entioned c  | ourse, the stu                 | dents will be able to                    | :                      |                                |
| CO1             |                     | n the meth<br>n of linear |             | ots of non-lin                 | near equations, inter                    | polation and           | Understanding (C2)             |
| CO2             |                     |                           |             |                                | linear and non-line and differential equ |                        | Applying (C3)                  |
| CO3             | related             | l problems                |             | •                              | inding approximate                       |                        | Analyzing (C4)                 |
| CO4             | proble              | ms.                       |             |                                | the initial and bou                      | ındary value           | Evaluating (C5)                |
| Modu<br>le No.  | Title of<br>Module  |                           | Topics in   | the Module                     |                                          |                        | No. of Lectures for the module |
| 1.              | Concep              | t of                      |             | •                              | and maximum abs                          | solute errors,         | 2                              |
|                 | Errors              |                           |             |                                | v of the numbers.  Newton-Raphson'       | s method.              | 1.0                            |
| 2.              | Algebra             |                           | Iterative   | method,                        | 10                                       |                        |                                |
|                 | transce<br>equation |                           |             | e iteration me<br>nomial: Horn |                                          |                        |                                |
|                 | cquatio             | 11.5                      | Lin's me    |                                |                                          |                        |                                |
|                 |                     |                           | a system    |                                |                                          |                        |                                |
| 3.              | 3. System of        |                           |             | mination met                   | hod, Gauss-Jordon                        | method, LU-            | 6                              |
|                 |                     | lgebraic                  | decompo     |                                |                                          |                        |                                |
|                 | equatio             | ns                        | Gauss-Se    |                                |                                          |                        |                                |
| 4.              | Eigen v             | aluec                     | iteration   |                                | d dominant eigen val                     | lue and eigen          | 6                              |
| 7.              | and eig             |                           |             | ayleigh metho                  | U                                        |                        |                                |
|                 | vectors             |                           |             | • •                            | rix by Jacobi's,                         | •                      |                                |
|                 |                     |                           | -           | lder's method                  | •                                        |                        |                                |
| 5.              | Interpo             | lation                    |             |                                | · · · · · · · · · · · · · · · · · · ·    | forward and            | 3                              |
|                 |                     |                           |             |                                | on, Lagrange's i                         | nterpolation,          |                                |
| (               | NT .                |                           | •           | erpolation.                    | 1 ' .' N                                 |                        |                                |
| 6.              | Numeri<br>differen  |                           | Approxim    | nation of<br>-Trapezoidal      | ,                                        | ewton-Cotes oole's and | 6                              |
|                 |                     | egration                  |             |                                | egration with error                      |                        |                                |
|                 |                     | 8                         |             |                                | two and three poin                       |                        |                                |
|                 |                     |                           |             |                                | on by Trapezoidal ar                     |                        |                                |
|                 | rules.              |                           |             |                                |                                          |                        |                                |
| 7.              | Differe             |                           |             |                                | r's and modified Eu                      |                        | 9                              |
| equations       |                     |                           |             | series metho                   |                                          |                        |                                |
|                 |                     |                           |             |                                | ltistep methods,<br>her order equation   |                        |                                |
|                 |                     |                           |             |                                | difference and shoot                     |                        |                                |
|                 | <u> </u>            |                           | , pro       | -10110. 111110                 | Total number                             |                        | 42                             |
| Evaluat         | ion Crite           | eria                      |             |                                |                                          |                        |                                |
| Compo           |                     |                           | Ma          | ximum Marl                     | <b>KS</b>                                |                        |                                |
|                 |                     |                           |             |                                |                                          |                        |                                |

T1 20 T2 20 **End Semester Examination** 35 25 (Quiz, Assignments, Tutorials) TA **Total** 100 **Project Based Learning:** Each student in a group of 4-6 will apply the concepts of numerical methods for the solution of ODE and PDE. **Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computation, 6<sup>th</sup> Ed., New Age International, New Delhi, 2014. 2. R. S. Gupta, Elements of Numerical Analysis, 2nd Ed., (2015) Macmillan.

3. C. F. Gerald and P.O. Wheatley, Applied Numerical Analysis, 7<sup>th</sup> Ed., Pearson Education, 2007.

**4. Bradie B., A** Friendly Introduction to Numerical Analysis, 1st Ed., Pearson Prentice Hall, 2006

5. **Pal, M.** Numerical Analysis for Scientists and Engineers: Theory and C Programs, Narosa, Reprint 2020

**CO-PO-PSO Mapping** 

|     | PO1  | PO2  | PO3  | PSO1 |
|-----|------|------|------|------|
| CO1 | 2    | 1    | •    | 2    |
| CO2 | 3    | 2    | •    | 2    |
| CO3 | 2    | 1    | -    | 2    |
| CO4 | 3    | 2    | 1    | 2    |
| Avg | 2.50 | 1.50 | 1.00 | 2.00 |

### **Operations Research (19M21MA213)**

| Course C   | Code                                                                            | 19M21MA213                                                                              | Semester       | Odd          | Semester III S<br>Month from J |                    | n <b>2024-2025</b> c 2024 |
|------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|--------------|--------------------------------|--------------------|---------------------------|
| Course N   | lame                                                                            | Operations Research                                                                     | h              |              |                                |                    |                           |
| Credits    |                                                                                 | 3                                                                                       |                |              | <b>Contact Hours</b>           | 3-0-0              | )                         |
| Faculty    |                                                                                 | Coordinator(s)                                                                          |                |              |                                |                    |                           |
| (Names)    |                                                                                 | Teacher(s)<br>(Alphabetically)                                                          |                |              |                                |                    |                           |
| COURSE     | E OUT                                                                           | COMES                                                                                   |                |              |                                |                    | COGNITIVE<br>LEVELS       |
| After purs | suing th                                                                        | e above-mentioned co                                                                    | ourse, the stu | dents will b | be able to:                    |                    |                           |
| C213.1     | explain the basics of linear programming problems and duality.  Unde (C2)       |                                                                                         |                |              |                                | Understanding (C2) |                           |
| C213.2     | apply different methods for solving linear programming problems.  Applying (C3) |                                                                                         |                |              |                                |                    |                           |
| C213.3     |                                                                                 | solve various transportation, assignment, queueing and inventory models.  Applying (C3) |                |              |                                |                    |                           |

| C213.4        | examine optimality co<br>programming problems | nditions and perform sensitivity analysis for linear s.                                                                                                                                                                                                                                      | Analyzing (C4)                 |
|---------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Module<br>No. | Title of the Module                           | Topics in the Module                                                                                                                                                                                                                                                                         | No. of Lectures for the module |
| 1.            | Linear<br>Programming<br>Problems (LPP)       | Introduction, definition of operations research, its scope and Application in different areas, Convex sets, formulation of LPP, graphical solutions, Simplex method, big-M method, two phase method, special cases in simplex method.                                                        | 10                             |
| 2.            | Duality and<br>Sensitivity Analysis           | Primal-Dual relationship, duality, dual simplex method, sensitivity analysis.                                                                                                                                                                                                                | 7                              |
| 3.            | Transportation<br>Problems                    | Mathematical formulation of transportation problem, basic feasible solution-north west corner rule, least cost method, Vogel's approximation method, degeneracy, resolution on degeneracy, optimal solution, maximization case in transportation problem, unbalanced transportation problem. | 7                              |
| 4.            | Assignment<br>Problems                        | Mathematical formulation of assignment problem, optimality condition, Hungarian method, maximization case in assignment problem, unbalanced assignment problem, travelling salesman problem.                                                                                                 | 4                              |
| 5             | Elementary<br>Queuing Models                  | Markov process, steady-state solutions of Markovian queuing models: M/M/1, M/M/1 with limited waiting space, M/M/C, M/M/C with limited waiting space, M/G/1 model.                                                                                                                           | 7                              |
| 6             | Elementary<br>Inventory Models                | Inventory control models: economic order quantity (EOQ), deterministic inventory problems with and without shortage.                                                                                                                                                                         | 7                              |
|               | 42                                            |                                                                                                                                                                                                                                                                                              |                                |

| Components               | Maximum Marks                     |
|--------------------------|-----------------------------------|
| T1                       | 20                                |
| T2                       | 20                                |
| End Semester Examination | 35                                |
| TA                       | 25 (Quiz, Assignments, Tutorials) |
| Total                    | 100                               |

**Project based learning:** Each student in a group of 2-3 will collect literature on queueing and inventory models to solve some applicational problem. To make the subject application based, the students analyze the optimized way to deal with aforementioned topics.

**Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- 1. H. A. Taha, Operations Research- An Introduction, 11<sup>th</sup> Edition, Pearson Education, 2022.
- 2. G. Hadley, Linear Programming, Massachusetts, Addition Wesley, 1962.
- 3. **F. S. Hiller and G. J. Lieberman,** Introduction to Operations Research, 11<sup>th</sup> Edition, McGraw-Hill Education, 2021.
- 4. H. M. Wagner, Principles of Operations Research with Applications to Managerial Decisions, Prentice Hall of India Pvt. Ltd., 1975.

# **CO-PO-PSO Mapping:**

|        | PO1  | PO2  | PO3  | PSO1 |
|--------|------|------|------|------|
| C213.1 | 3    | 2    |      | 2    |
| C213.2 | 3    | 3    |      | 3    |
| C213.3 | 3    | 3    | 2    | 3    |
| C213.4 | 3    | 3    |      | 3    |
| Avg.   | 3.00 | 2.75 | 2.00 | 2.75 |

## Fluid Dynamics (22M22MA211)

| Course<br>Code | 22M22N                    | ЛА211                                                                            | Semester<br>Odd                                           |                  | Semester III Session- 2024- 2025<br>Month from July -Dec 2024 |                      |                    |  |
|----------------|---------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------|------------------|---------------------------------------------------------------|----------------------|--------------------|--|
| Course<br>Name | Fluid Dy                  | vnamics                                                                          |                                                           |                  |                                                               |                      |                    |  |
| Credits        | 3                         |                                                                                  |                                                           | Contact<br>Hours |                                                               | 3-0-0                |                    |  |
| Faculty        | Coordi                    | nator(s)                                                                         |                                                           |                  |                                                               |                      |                    |  |
| (Names)        | Teacher<br>(Alphab        | r(s)<br>petically)                                                               |                                                           |                  |                                                               |                      |                    |  |
| COURSI         | E OUTCOM                  | ES                                                                               |                                                           |                  |                                                               |                      | COGNITIVE          |  |
| After pur      | suing the abor            | ve mentio                                                                        | ned course,                                               | the student      | ts v                                                          | vill be able to:     |                    |  |
| C237.1         | explain the b             | asics of f                                                                       | luids, its m                                              | otions and       | boı                                                           | undary layer theory. | Understanding (C2) |  |
| C237.2         | apply the pri             | nciples of                                                                       | fluid mech                                                | nanics in sol    | lvii                                                          | ng related problems. | Applying (C3)      |  |
| C237.3         | make use or related probl |                                                                                  | and potential flows based theorems to solve Applying (C3) |                  |                                                               |                      |                    |  |
| C237.4         | analyse the c             | Analyzing lyse the concepts of laminar and boundary layer flows.  Analyzing (C4) |                                                           |                  |                                                               |                      |                    |  |
| Module<br>No.  | Title of the<br>Module    | Topics                                                                           | in the Moo                                                | lule             |                                                               |                      | No. of<br>Lectures |  |

| 1.                            | Kinematics                  | Lagrangian and Eulerian descriptions, equation of continuity, stream lines, path lines and streak lines, vorticity, velocity potential and stream function, compressible and incompressible flows, circulation, rotational and irrotational motions.                                                                                                                        | 8 |  |  |  |  |
|-------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|
| 2.                            | Dynamics                    | Equations of motion, inviscid case, Bernoulli's theorem, Kelvin's theorem, constancy of circulation, equations referred to moving axes, impulsive actions, vortex motion and its elementary properties, motions due to circular and rectilinear vortices.                                                                                                                   | 8 |  |  |  |  |
| 3.                            | Potential<br>Flow           | Irrotational motion in two-dimensions, complex-velocity potential sources, stream function, source, sink and doublets, circle theorem, method of images, conformal mapping, theorem of Blasius, Strokes stream function, motion of a sphere.                                                                                                                                | 8 |  |  |  |  |
| 4.                            | Laminar<br>Flow             | Stress components in a real fluid, Navier-Stokes equations, plane Poiseiuille and Couette flows between two parallel plates, flow through a pipe of uniform cross section in the form of circle, flow between two coaxial cylinders, energy equation, dynamical similarity.                                                                                                 | 9 |  |  |  |  |
| 5.                            | Boundary<br>Layer<br>Flows  | Boundary layer thickness, displacement thickness, Prandlt's boundary layer, laminar boundary layer equations, Blasius solution, solution by Karman-Pohlhausen methods, separation of boundary layer flow, dimensional analysis, large Reynold's numbers, similar solutions, flow past a flat plate, temperature distribution in Couette flow and in flow past a flat plate. | 9 |  |  |  |  |
|                               | Total number of lectures 42 |                                                                                                                                                                                                                                                                                                                                                                             |   |  |  |  |  |
| Evaluati                      | on Criteria                 |                                                                                                                                                                                                                                                                                                                                                                             |   |  |  |  |  |
| Compon<br>T1<br>T2<br>End Sem | ents ester Examina          | Maximum Marks 20 20 tion 35                                                                                                                                                                                                                                                                                                                                                 |   |  |  |  |  |

**Project based learning:** Students in small groups will be assigned the problem of boundary layer flows and its applications.

25 (Quiz, Assignments, Tutorials)

**Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

|    | •                                                                                           |  |
|----|---------------------------------------------------------------------------------------------|--|
| 1. | <b>S. W. Yuan,</b> Foundation of Fluid Mechanics, 3 <sup>rd</sup> Ed., Prentice Hall, 1976. |  |

**F. Chorlton,** Textbook of Fluid Dynamics, C.B.S. Publishers, 2005.

**100** 

TA

**Total** 

| 3. | P. K. Kundu and I. M. Cohen, Fluid Mechanics, Academic Press, 2005.                  |
|----|--------------------------------------------------------------------------------------|
| 4. | Frank M. White, Fluid Mechanics, 6th Ed., Tata McGraw-Hill, New Delhi, 2008.         |
| 5. | H. Schlichting and K. Gersten, Boundary Layer Theory, 9th Ed., Springer, 2017.       |
| 6. | R. W. Fox and A.T. McDonald, Introduction to Fluid Mechanics, 10th Ed., Wiley, 2020. |

# **CO-PO and CO-PSO Mapping:**

| <u>CO</u> | PO1  | PO2  | PO3  | PSO1 |
|-----------|------|------|------|------|
| C237.1    | 2    | 2    | -    | 2    |
| C237.2    | 3    | 2    | -    | 2    |
| C237.3    | 3    | 3    | -    | 3    |
| C237.4    | 3    | 3    | 2    | 3    |
| Avg       | 2.75 | 2.50 | 2.00 | 2.50 |

# Fuzzy Sets and Applications (20M22MA213)

| Course                                                                   | Code                                                                                       | 20M22MA213                                                                         | Semester Odd |         | Semester IIISession2024-2025Month fromJul- Dec 2024 |                     |  |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------|---------|-----------------------------------------------------|---------------------|--|
| Course 1                                                                 | Name                                                                                       | Fuzzy Sets and A                                                                   | pplications  |         |                                                     |                     |  |
| Credits                                                                  |                                                                                            | 3                                                                                  |              | Contact | Hours                                               | 3-0-0               |  |
| Faculty (Names)                                                          | )                                                                                          | Coordinator(s)                                                                     |              |         |                                                     |                     |  |
| , ,                                                                      |                                                                                            | Teacher(s)<br>(Alphabetically)                                                     |              |         |                                                     |                     |  |
| COURS                                                                    | COURSE OUTCOMES                                                                            |                                                                                    |              |         |                                                     | COGNITIVE<br>LEVELS |  |
| After pursuing the above-mentioned course, the students will be able to: |                                                                                            |                                                                                    |              |         |                                                     |                     |  |
| C232.1                                                                   | expla                                                                                      | explain the basics of fuzzy set theory and related operations.  Understanding (C2) |              |         |                                                     |                     |  |
| C232.2                                                                   | apply fuzzy mapping and fuzzy rules to solve function approximation models.  Applying (C3) |                                                                                    |              |         |                                                     |                     |  |

| C232.3            | make use of fu                                 | Applying (C3)                                                                                                                                                                                                                                        |                                      |  |  |  |  |
|-------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|
| C232.4            | -                                              | analyze multi criteria decision making, fuzzy relational data bases and fuzzy queries in crisp databases.                                                                                                                                            |                                      |  |  |  |  |
| Mod<br>ule<br>No. | Title of the<br>Module                         | Topics in the Module                                                                                                                                                                                                                                 | No. of<br>Lectures for<br>the module |  |  |  |  |
| 1.                | Basic<br>Concepts of<br>Fuzzy Sets             | Motivation, fuzzy sets and their representations, membership functions and their designing, types of fuzzy sets, operations on fuzzy sets, convex fuzzy sets, alpha level cuts, Zadeh's extension principle, geometric interpretation of fuzzy sets. | 4                                    |  |  |  |  |
| 2.                | Fuzzy<br>Relations                             | 4                                                                                                                                                                                                                                                    |                                      |  |  |  |  |
| 3.                | Fuzzy<br>Arithmetic                            | 3                                                                                                                                                                                                                                                    |                                      |  |  |  |  |
| 4.                | Fuzzy Logic                                    | Fuzzy propositions, fuzzy quantifiers, linguistic variables, fuzzy inference.                                                                                                                                                                        | 3                                    |  |  |  |  |
| 5.                | Possibility<br>Theory                          | 5                                                                                                                                                                                                                                                    |                                      |  |  |  |  |
| 6.                | Probability<br>of a fuzzy<br>event             | 4                                                                                                                                                                                                                                                    |                                      |  |  |  |  |
| 7.                | Fuzzy Implicatio ns and Approximat e Reasoning | Fuzzy mapping rules and fuzzy implication rules. fuzzy rule-based models for function approximation, types of fuzzy rule-based models (the Mamdani, TSK, and standard additive models).                                                              | 7                                    |  |  |  |  |
| 8.                | Decision<br>making in<br>Fuzzy<br>environment  | 7                                                                                                                                                                                                                                                    |                                      |  |  |  |  |
| 9.                | Fuzzy<br>databases<br>and queries              | Introduction, fuzzy relational databases, fuzzy queries in crisp databases.                                                                                                                                                                          | 5                                    |  |  |  |  |
|                   |                                                | Total number of lectures                                                                                                                                                                                                                             | 42                                   |  |  |  |  |

### **Components Maximum Marks**

T1 20

T2 20

End Semester Examination 35

TA 25 (Quiz, Assignments, Tutorials)

Total 100

**Project based learning:** Students will be divided in the group of 2-3 students to collect the literature report and submit a report on applications of multi-criteria fuzzy decision making.

**Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- **1. J. Yen and R. Langari,** Fuzzy Logic: Intelligence, Control, and Information, Pearson Education, 2003.
- **2. G. J. Klir, and B. Yuan,** Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall of India, 2015.
- 3. H. J. Zimmermann, Fuzzy Set theory and its Applications, Kluwer Academic Publ, 2020.
- **4. A. K. Bhargava,** Fuzzy Set Theory Fuzzy Logic and Their Applications, S. Chand Publ., First Edition, 2013.
- **5. M. Ganesh,** Introduction to Fuzzy Sets and Fuzzy Logic, PHI Learning Private Limited, 2012.

|        | PO1  | PO2  | PO3 | PSO1 |
|--------|------|------|-----|------|
| C232.1 | 2    | 2    | -   | 2    |
| C232.2 | 3    | 2    | -   | 2    |
| C232.3 | 3    | 2    | -   | 2    |
| C232.4 | 3    | 3    | 1   | 3    |
| Avg.   | 2.75 | 2.25 | 1   | 2.25 |

# Graph Theory (21M22MA215)

| Course Code          |                                       | 21M22MA                                                                                               | 215                                                                                                   | Semester                                                                                                                                                                                                                                | Even                                                                                                                                                          | Semest<br>Month |                                | ssion 2024-2025<br>Dec 2024 |
|----------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------|-----------------------------|
| Course Name Graph Th |                                       | eory                                                                                                  |                                                                                                       |                                                                                                                                                                                                                                         | 1                                                                                                                                                             |                 |                                |                             |
| Credits 3            |                                       | 3                                                                                                     |                                                                                                       |                                                                                                                                                                                                                                         | Contact                                                                                                                                                       | Hours           | 3-0-0                          |                             |
| Faculty              |                                       | Coordinat                                                                                             | or(s)                                                                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                               |                 | •                              |                             |
| (Names)              |                                       | Teacher(s)<br>(Alphabetic                                                                             | cally)                                                                                                |                                                                                                                                                                                                                                         |                                                                                                                                                               |                 |                                |                             |
| COURSE               | E OUT                                 | COMES                                                                                                 |                                                                                                       |                                                                                                                                                                                                                                         |                                                                                                                                                               |                 |                                | COGNITIVE<br>LEVELS         |
| After purs           | suing th                              | e above-ment                                                                                          | ioned c                                                                                               | course, the stud                                                                                                                                                                                                                        | ents will b                                                                                                                                                   | e able to       | :                              |                             |
| C214.1               | explai                                | n basics conc                                                                                         | epts of                                                                                               | graphs and tre                                                                                                                                                                                                                          | es.                                                                                                                                                           |                 |                                | Understanding (C2)          |
| C214.2               |                                       | problems rel<br>and enumer                                                                            |                                                                                                       | trees, cut set                                                                                                                                                                                                                          | s, planarit                                                                                                                                                   | y of gra        | phs, vector                    | Applying (C3)               |
| C214.3               | constr<br>graphs                      |                                                                                                       | epresen                                                                                               | tations and ch                                                                                                                                                                                                                          | nromatic p                                                                                                                                                    | oolynomi        | als for the                    | Applying (C3)               |
| C214.4               |                                       | ne Galois fie<br>ems in graph                                                                         | -                                                                                                     | graph theoretic                                                                                                                                                                                                                         | algorithm                                                                                                                                                     | s for solv      | ving related                   | Analyzing (C4)              |
| Module<br>No.        | Title o                               |                                                                                                       | Topics in the Module                                                                                  |                                                                                                                                                                                                                                         |                                                                                                                                                               |                 | No. of Lectures for the module |                             |
| 1.                   | terminology u                         |                                                                                                       |                                                                                                       | as and related definitions, directed and ected graph, Konigsberg bridge problem, problem, paths and circuits, subgraphs, orphism, Euler graph, operations on graph, Itonian graph, travelling salesman problem, ed and weighted graphs. |                                                                                                                                                               |                 |                                | 7                           |
| 2.                   | binary ti<br>spanning                 |                                                                                                       |                                                                                                       | tree, counting tree, conne                                                                                                                                                                                                              | ion, distance, centre in a tree, rooted and tree, counting trees, fundamental circuit, ag tree, connectivity, separability. nental cut set and network flows. |                 |                                | 8                           |
| 3.                   | Plana                                 | arity Planar graph, detection of planarity, geometric and combinatorial dual, thickness and crossings |                                                                                                       |                                                                                                                                                                                                                                         | 5                                                                                                                                                             |                 |                                |                             |
| 4.                   | Vecto<br>a grap                       | r spaces of<br>h                                                                                      | Vector and vector spaces, basis, orthogonal vectors and spaces.  Modular arithmetic and Galois field. |                                                                                                                                                                                                                                         |                                                                                                                                                               | 6               |                                |                             |
| 5.                   | Matrix<br>repress<br>and gr<br>colori | entation<br>aph                                                                                       | Graph                                                                                                 | ious matrix representations of the graph. ph coloring, four color and five color theorem, omatic number, chromatic polynomial                                                                                                           |                                                                                                                                                               |                 | 7                              |                             |
| 6.                   | Enum<br>graph<br>algori               |                                                                                                       | Polya                                                                                                 | Types of enumeration, counting labeled trees, Polya's counting theorem, algorithms: connectedness and components.                                                                                                                       |                                                                                                                                                               |                 | 9                              |                             |

|  | Shortest path algorithm, depth first and breadth first search. |    |
|--|----------------------------------------------------------------|----|
|  | Total number of lectures                                       | 42 |

**PBL:** A group of 2 to 3 students will explore more applications in the said area of employability and will use these to solve the real problems. Their findings will be evaluated on the basis of their report as well as viva voce.

#### **Evaluation Criteria**

| Components               | Maximum Marks                     |
|--------------------------|-----------------------------------|
| T1                       | 20                                |
| T2                       | 20                                |
| End Semester Examination | 35                                |
| TA                       | 25 (Quiz, Assignments, Tutorials) |
| Total                    | 100                               |

**Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

- **N. Deo,** Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall of India, 2004.
- 2. R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Springer, 2012.
- V. K. Balakrishnan, Graph Theory, Discrete Mathematics with Applications, Tata McGraw Hill Publishing Co. Ltd. 2004.
- **4. C. Vasudev,** Graph Theory with Applications, New Age International, 2006.
- **8. J. Wilson,** Introduction to Graph Theory, 5th Ed., Longman, 2010.
- **6. D.B. West,** Introduction to Graph Theory, 2nd Ed., Pearson Education, New Delhi, 2016.

#### **CO-PO-PSO Mapping**

|        | PO1  | PO2  | PO3  | PSO1 |
|--------|------|------|------|------|
| C214.1 | 3    | 1    |      | 1    |
| C214.2 | 3    | 2    |      | 2    |
| C214.3 | 3    | 3    | 1    | 2    |
| C214.4 | 3    | 3    | 1    | 3    |
| Avg    | 3.00 | 2.25 | 1.00 | 2.00 |

### **Theory of Computation (24M22MA211)**

| <b>Course Code</b> | 24M22MA211            | Semester Od | d Semeste            | er III Session 2024-25 |
|--------------------|-----------------------|-------------|----------------------|------------------------|
|                    |                       |             | Month                | from July- Dec 2024    |
| Course Name        | Theory of Computation |             |                      |                        |
| Credits            | 3                     |             | <b>Contact Hours</b> | 3-0-0                  |

| Faculty Coordinate |                                                                                                                     |                             | or(s)                                                                                                | Prof. Alka T                                                   | ripathi                      |                                  |                     |                  |                     |
|--------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------|----------------------------------|---------------------|------------------|---------------------|
| (Names)            | -                                                                                                                   | Teacher(s) (Alphabetic      | cally)                                                                                               |                                                                |                              |                                  |                     |                  |                     |
| COURSI             | E OUTCO                                                                                                             | OMES                        |                                                                                                      |                                                                |                              |                                  |                     |                  | COGNITIVE<br>LEVELS |
| After pur          | suing the                                                                                                           | above mention               | oned co                                                                                              | urse, the stud                                                 | dents will b                 | oe able to:                      |                     | <b>I</b>         |                     |
| C238.1             | recall th                                                                                                           | e concepts o                | of set the                                                                                           | eory, graphs                                                   | and strings                  | S.                               |                     |                  | Remembering (C1)    |
| C238.2             | explain basic concepts of automata, languages, Turing machines and limitations of computers in unsolvable problems. |                             |                                                                                                      |                                                                | Understanding (C2)           |                                  |                     |                  |                     |
| C238.3             |                                                                                                                     | regular gra                 |                                                                                                      |                                                                | •                            | •                                | n automata          | and              | Applying (C3)       |
| C238.4             | 1 1 2                                                                                                               | omplexity thens that do not | •                                                                                                    | •                                                              | -                            | pleteness t                      | o identify          |                  | Applying (C3)       |
| Module<br>No.      | Title of<br>Module                                                                                                  |                             | Topic                                                                                                | s in the Moo                                                   | dule                         |                                  |                     |                  | No. of Lectures     |
| 1.                 | Introduct                                                                                                           | 1011                        | functio                                                                                              | elations, fund<br>n, graphs an<br>mmars .                      |                              |                                  | •                   | _                | <i>-</i>            |
| 2.                 | Finite Au                                                                                                           |                             | Finite automata, transition systems, determinism and non determinism, properties of finite automata. |                                                                |                              |                                  | 6                   |                  |                     |
| 3.                 | Myhill-N<br>theorem,<br>grammar<br>free gram                                                                        | regular<br>and context      | pumpii<br>theorei                                                                                    | utomata reging lemma for and minimar, and Push                 | or regular ization of f      | sets. Th                         | e Myhill-N          | Verode           | O                   |
| 4.                 | Computa<br>Turing M                                                                                                 | •                           |                                                                                                      | ndard Turing<br>es, nondeter                                   | _                            |                                  | -                   | ring             | 5                   |
| 5.                 | Computa                                                                                                             | ·                           | Turing<br>machir                                                                                     | enting restric<br>machines,<br>es, limits on<br>ability, funct | encoding<br>language         | of stri                          | ngs and z           | Furing<br>ty and |                     |
| 6.                 | Complex                                                                                                             |                             | classifi<br>hierarc<br>bounde                                                                        | ges and procession of denies, time-bed complexity hard and co  | lecision pounded cyclasses), | roblems<br>omplexity<br>compleme | (space and classes, | time             |                     |
| 7.                 | NP-comp                                                                                                             | oleteness                   | NP-coi                                                                                               | nplete proble                                                  | ems, the bo                  | oundary be                       | tween P an          | d NP.            | 4                   |
|                    |                                                                                                                     |                             |                                                                                                      |                                                                |                              | Total nu                         | nber of lec         | tures            | 42                  |

**Project based learning:** Students in small groups will identify real life problems which are polynomial time solvable or unsolvable. Find complexity of solvable problems. **Evaluation Criteria** Components **Maximum Marks** T2 20 **End Semester Examination** 35 25 (Quiz, Assignments, PBL etc.) TA **Total** 100 **Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format) P. Linz, An Introduction to Formal Languages and Automata, 6th edition, Jones & Bartlett, 2016. J. E. Hoperoft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory, Languages and 2. Computation, 3<sup>rd</sup> edition, Pearson Education, 2016. J. C. Martin, Introduction to Languages and the Theory of Computation, 3<sup>rd</sup> edition, McGraw-Hill, **3.** Inc., New York, NY, 2007. S. Homer and A.L. Selman, Computability and Complexity Theory, Springer-Verlag, Inc., New 4. York, NY, 2<sup>nd</sup> Edition, 2011. H.R. Lewis, C.H. Padadumtriou, and C. Papadimitriou, Elements of the Theory of Computation, 2<sup>nd</sup> edition PHI Publ. 2015. **G.P.S. Varma and B.T. Rao,** Theory of Computation, Scitech Publ. 2011. 6.

### **CO-PO and CO-PSO Mapping:**

| COs | PO1  | PO2  | PO3  | PSO1 |
|-----|------|------|------|------|
| CO1 | 2    | 2    | -    | 2    |
|     |      |      |      |      |
| CO2 | 3    | 3    | -    | 2    |
| CO3 | 3    | 3    | -    | 2    |
| CO4 | 3    | 3    | 1    | 2    |
| Avg | 2.75 | 2.75 | 1.00 | 2.00 |

### Numerical Analysis Lab (19M25MA211)

| Course Code | 19M25MA211             | Semester Odd |         | Semest | er III Session 2024-2025 |
|-------------|------------------------|--------------|---------|--------|--------------------------|
|             |                        |              |         | Month  | from Jul- Dec 2024       |
| Course Name | Numerical Analysis Lab |              |         |        |                          |
| Credits     | 01                     |              | Contact | Hours  | 0-0-2                    |
|             | Coordinator(s)         |              |         |        |                          |

| Faculty (Names) | Teacher(s)<br>(Alphabeti                        |                                                                                                                                                                                                                                                                                                                 |                    |  |  |  |  |
|-----------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|
| COURSE          | COURSE OUTCOMES                                 |                                                                                                                                                                                                                                                                                                                 |                    |  |  |  |  |
| After purs      | suing the above men                             | tioned course, the students will be able to:                                                                                                                                                                                                                                                                    |                    |  |  |  |  |
| C270.1          | explain the basics of equations.                | of MATLAB to find real roots of algebraic/ transcendental                                                                                                                                                                                                                                                       | understanding (C2) |  |  |  |  |
| C270.2          | 1 1                                             | am to solve system of linear algebraic equations and ems using MATLAB.                                                                                                                                                                                                                                          | Applying (C3)      |  |  |  |  |
| C270.3          | compare the MAT numerical methods               | LAB programs for finding derivatives and integrals using s.                                                                                                                                                                                                                                                     | Analyzing (C4)     |  |  |  |  |
| C270.4          | estimate solutions in MATLAB.                   | of ordinary differential equations by developing programs                                                                                                                                                                                                                                                       | Evaluating (C5)    |  |  |  |  |
| Module<br>No.   | Title of the<br>Module                          | List of Experiments                                                                                                                                                                                                                                                                                             |                    |  |  |  |  |
| 1.              | Algebraic/<br>transcendental<br>equations       | <ol> <li>To find a real root of an algebraic/ transcendental equation by using Newton-Raphson method.</li> <li>To find a real root of an algebraic/ transcendental equation by using Successive iteration method.</li> <li>To find a root of an equation by using Muller's method.</li> </ol>                   |                    |  |  |  |  |
| 2.              | System of linear<br>algebraic<br>equations      | <ol> <li>Implementation of Gauss-Elimination method to solve a system of linear algebraic equations.</li> <li>Implementation of Gauss-Jordon method to solve a system of linear algebraic equations.</li> <li>Implementation of Gauss-Seidel method to solve a system of linear algebraic equations.</li> </ol> |                    |  |  |  |  |
| 3.              | Interpolation                                   | <ul><li>7. Implementation of Lagrange's formula for interpolation.</li><li>8. Implementation of Newton's divided difference formula for interpolation.</li></ul>                                                                                                                                                |                    |  |  |  |  |
| 4.              | Numerical<br>differentiation<br>and integration | <ul> <li>9. To find differential coefficients of 1st and 2nd orders using interpolation formulae.</li> <li>10. To evaluate integrals by using Trapezoidal rule.</li> <li>11. To evaluate integrals by using Simpson method.</li> </ul>                                                                          |                    |  |  |  |  |
| 5.              | Differential equations                          | <ul><li>12. To compute the solution of ordinary differential equations by using Euler's method.</li><li>13. To compute the solutions of ordinary differential equations by using Runge-Kutta methods.</li><li>14. To solve two point boundary value problem by shooting and finite difference method.</li></ul> |                    |  |  |  |  |
|                 | on Criteria                                     | Maximum Marks                                                                                                                                                                                                                                                                                                   |                    |  |  |  |  |
| Lab Test        | 1                                               | 20<br>20                                                                                                                                                                                                                                                                                                        |                    |  |  |  |  |

| TA   | 60 (Quiz, Assignments, Tests, Viva)                                                                                                                                                 |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Tota | 100                                                                                                                                                                                 |  |  |  |  |  |  |
|      | <b>Recommended Reading material:</b> Author(s), Title, Edition, Publisher, Year of Publication etc. (Tebooks, Reference Books, Journals, Reports, Websites etc. in the IEEE format) |  |  |  |  |  |  |
| 1.   | <b>R. Pratap,</b> Getting started with MATLAB: A quick introduction for scientists and engineers, Oxford university press, 2016.                                                    |  |  |  |  |  |  |
| 2.   | <b>B. S. Grewal</b> , Numerical Methods in Engineering & Science: With Programs in C, C++ & MATLAB, 11 <sup>th</sup> Ed., Khanna, 2014.                                             |  |  |  |  |  |  |
| 3.   | <b>S. Nomura</b> , C Programming and Numerical Analysis: An Introduction, 1 <sup>st</sup> Ed, Morgan & Claypool Publishers, 2018.                                                   |  |  |  |  |  |  |
| 4.   | <b>S. S. Otto</b> , Introduction to Programming and Numerical Methods in MATLAB, 1 <sup>st</sup> Ed. Springer, 2005.                                                                |  |  |  |  |  |  |
| 5.   | <b>D. Vaughan Griffiths and I. M. Smith,</b> Numerical Methods for Engineers, 2 <sup>nd</sup> Ed., CRC Press, 2006.                                                                 |  |  |  |  |  |  |
| 6.   | <b>S. C. Chapra</b> , Applied Numerical Methods with Matlab for Engineers and Scientists, 2 <sup>nd</sup> Ed. Tata McGraw Hill, New Delhi, 2008.                                    |  |  |  |  |  |  |

### **CO-PO-PSO Mapping**

|     | PO1  | PO2  | PO3 | PSO1 |
|-----|------|------|-----|------|
| CO1 | 3    | 2    | -   | 2    |
| CO2 | 3    | 2    | -   | 2    |
| CO3 | 3    | 2    | -   | 2    |
| CO4 | 3    | 2    | -   | 2    |
| Avg | 3.00 | 2.00 | -   | 2.00 |

## Operations Research Lab (19M25MA212)

| Course Code    | 19M25MA212                     |  |         |                    | ster III Session 2024-2025<br>h from Jul- Dec 2024 |  |  |
|----------------|--------------------------------|--|---------|--------------------|----------------------------------------------------|--|--|
| Course Name    | e Operations Research Lab      |  |         |                    |                                                    |  |  |
| Credits        | 01                             |  | Contact | <b>Hours</b> 0-0-2 |                                                    |  |  |
| Faculty        | Coordinator(s)                 |  |         |                    |                                                    |  |  |
| (Names)        | Teacher(s)<br>(Alphabetically) |  |         |                    |                                                    |  |  |
| COURSEOUTCOMES |                                |  |         |                    | COGNITIVE<br>LEVELS                                |  |  |

| After purs                                         | suing the above m                      | entioned course, the students will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |  |  |  |  |
|----------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|
| C271.1                                             |                                        | cs of MATLAB to solve linear programming problems using                                                                                                                                                                                                                                                                                                                                                                                                               | Understanding (C2) |  |  |  |  |
| C271.2                                             | construct the particular MATLAB.       | programs to solve linear programming problems using                                                                                                                                                                                                                                                                                                                                                                                                                   | Applying (C3)      |  |  |  |  |
| C271.3                                             |                                        | develop the program to solve transportation, assignment and travelling salesman problems with the help of MATLAB.                                                                                                                                                                                                                                                                                                                                                     |                    |  |  |  |  |
| C271.4                                             | perform sensitive problems in MA       | vity analysis by developing programs for linear programming ATLAB.                                                                                                                                                                                                                                                                                                                                                                                                    | Analyzing (C4)     |  |  |  |  |
| Module<br>No.                                      | Title of the<br>Module                 | List of Experiments                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |  |  |  |  |
| 1.                                                 | Linear<br>programming<br>problems      | <ol> <li>Construct code to solve linear programming problem<br/>(LPP) using Graphical method.</li> <li>Construct code to solve linear programming problem<br/>(LPP) using Simplex method.</li> <li>Construct code to solve LPP using Big-M method.</li> <li>Construct code to solve LPP using two phase method.</li> </ol>                                                                                                                                            |                    |  |  |  |  |
| 2.                                                 | Duality and<br>sensitivity<br>analysis | <ol> <li>Construct code to write the dual of a primal problem.</li> <li>Construct code to solve LPP using dual simplex method.</li> <li>Construct code to analyze the sensitivity of optimal solution if cost coefficients are changed.</li> <li>Construct code to analyze the sensitivity of optimal solution if resource vector components are changed.</li> <li>Construct code to analyze the sensitivity of optimal solution if a constraint is added.</li> </ol> |                    |  |  |  |  |
| 3.                                                 | Transportation problem                 | 10. Construct code to solve transportation problem as a LPP.                                                                                                                                                                                                                                                                                                                                                                                                          |                    |  |  |  |  |
| 4.                                                 | Assignment problem                     | 11. Construct code to solve an assignment problem as a LPP.                                                                                                                                                                                                                                                                                                                                                                                                           |                    |  |  |  |  |
| 5.                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |  |  |  |
| Compone<br>Lab Test 2<br>Lab Test 2<br>TA<br>Total | 1                                      | Maximum Marks 20 20 60 (Quiz, Assignments, Tests, Viva) 100                                                                                                                                                                                                                                                                                                                                                                                                           |                    |  |  |  |  |

**Project based learning:** Each student in a group of 2-3 will collect literature on travelling salesman problem to code some applicational problem using MATLAB. To make the subject application based, the students analyze the optimized way to deal with aforementioned topics.

**Recommended Reading material:** Author(s), Title, Edition, Publisher, Year of Publication etc. (Text books, Reference Books, Journals, Reports, Websites etc. in the IEEE format)

1. R. Pratap, Getting started with MATLAB: A quick introduction for scientists and engineers, Oxford university press, 2016.

| 2. | <b>H. A. Taha</b> , Operations Research - An Introduction, Eleventh Edition, Pearson Education, 2022.                              |
|----|------------------------------------------------------------------------------------------------------------------------------------|
| 3. | <b>N. Ploskas and N. Samaras,</b> Linear programming using MATLAB, Springer Optimization and Its Applications 127, Springer, 2017. |
| 4. | S. K. Mishra and B. Ram, Introduction to linear programming with MATLAB, CRC Press, 2018.                                          |
| 5. | <b>R. H. Kwon,</b> Introduction to linear optimization and extensions with MATLAB, CRC Press, 2014.                                |
| 6. | <b>P. Venkataraman,</b> Applied Optimization with MATLAB programming, Second Edition, John Wiley & Sons, 2009.                     |

### **CO-PO-PSO Mapping:**

|        | PO1  | PO2  | PO3  | PSO1 |
|--------|------|------|------|------|
| C271.1 | 3    | 2    |      | 2    |
| C271.2 | 3    | 3    |      | 3    |
| C271.3 | 3    | 3    | 2    | 3    |
| C271.4 | 3    | 3    |      | 3    |
| Avg.   | 3.00 | 2.75 | 2.00 | 2.75 |

# **Theory of Data Science (21M22MA213)**

| Course Code       |                                                                                                                                                                                                                                      | 21M22MA2                         | 13                                    | Semester Even (specify Odd/Even)  Semester IV Sessi Month from Jan                                                                                                                |                                                           |                                       |                                                   |                                      |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|---------------------------------------------------|--------------------------------------|
|                   | Course Name Theory of D                                                                                                                                                                                                              |                                  | ata Scie                              |                                                                                                                                                                                   |                                                           |                                       |                                                   |                                      |
| Credits           |                                                                                                                                                                                                                                      | 3                                |                                       | Contact 1                                                                                                                                                                         | Hours                                                     | 3-0-0                                 | )                                                 |                                      |
| Faculty (I        | Names)                                                                                                                                                                                                                               | Coordinato                       | r(s)                                  |                                                                                                                                                                                   |                                                           |                                       |                                                   |                                      |
|                   |                                                                                                                                                                                                                                      | Teacher(s) (Alphabetica          | allw)                                 |                                                                                                                                                                                   |                                                           |                                       |                                                   |                                      |
| COURSE student wi |                                                                                                                                                                                                                                      | OMES: After                      |                                       | essful completion of this co                                                                                                                                                      | ourse, the                                                |                                       | COGN                                              | ITIVE<br>LS                          |
| C235.1            |                                                                                                                                                                                                                                      |                                  | epts rela                             | ted to the data science                                                                                                                                                           |                                                           |                                       |                                                   | standing (C2)                        |
| C235.2            | make u                                                                                                                                                                                                                               |                                  | supervis                              | ed and unsupervised technic                                                                                                                                                       | ques for o                                                | data                                  | Applyi                                            | ng(C3)                               |
| C235.3            | _                                                                                                                                                                                                                                    | re different dat<br>nent methods | a mode                                | ling techniques using mode.                                                                                                                                                       | l selectio                                                | n and                                 | Analyz                                            | ring(C4)                             |
| C235.4            | evalua                                                                                                                                                                                                                               | te related mode                  | els using                             | g various datasets.                                                                                                                                                               |                                                           |                                       | Evalua                                            | ting(C5)                             |
| Module<br>No.     | Title o<br>Modul                                                                                                                                                                                                                     |                                  | Topics                                | s in the Module                                                                                                                                                                   |                                                           |                                       |                                                   | No. of<br>Lectures for<br>the module |
| 1.                | The arr<br>Science                                                                                                                                                                                                                   | t of data<br>e                   | and uninnoval privacy theory decision | ne, velocity, variety, machinsupervised learning, predition and experimentation, ty, example, polynomial cu, model selection, the cu on theory, information theory, VC dimension. | dictions<br>he dark s<br>rve fittir<br>rse of d           | and for ide, big ng, prol             | recasts,<br>gerrors,<br>bability<br>onality,      | 6                                    |
| 2.                | Methods for linear models for regression, parameter estimation methods - maximum likelihood method and maximum a posteriori method, regularization, ridge regression, lasso, bias-variance decomposition, bayesian linear regression |                                  |                                       | mum a<br>, lasso,                                                                                                                                                                 | 7                                                         |                                       |                                                   |                                      |
| 3                 | Classification based on Bayesian decision theory                                                                                                                                                                                     |                                  |                                       | ian decision theory, Baye ate classification, normal ninant functions, decision ood estimation, maximum ian mixture models exill design for parameter estimation,                 | es classiful (Gaus<br>l surface<br>a posteri<br>pectation | ier, missian)<br>es, max<br>ori estin | nimum<br>density<br>kimum-<br>mation,<br>nization | 6                                    |
| 4                 | Classification based on non parametric I                                                                                                                                                                                             |                                  |                                       | Non-parametric techniques for density estimation, Parzen-window method, k-nearest neighbors method, logistic regression, perceptron,                                              |                                                           |                                       |                                                   | 5                                    |
| 5                 | Sequential pattern classification Hidden Markov models (HMMS) for sequential pattern classification discrete HMMS and continuous density HMMS                                                                                        |                                  |                                       |                                                                                                                                                                                   | •                                                         | 5                                     |                                                   |                                      |
| 6                 | Boosti                                                                                                                                                                                                                               |                                  |                                       | ort vector machine, decision trees, bagging, ing, gradient boosting                                                                                                               |                                                           |                                       | agging,                                           | 5                                    |
| 7.                | Dimensionality Pri reduction ana                                                                                                                                                                                                     |                                  |                                       | Principal component analysis, partial least squares, factor analysis, fisher discriminant analysis, linear and multiple discriminant analysis.                                    |                                                           |                                       | 4                                                 |                                      |
| 8.                | Extrac inform news                                                                                                                                                                                                                   | ting<br>ation from               | Algori<br>APIs,                       | thms, extracting data from text classification, metrics, arization.                                                                                                               |                                                           |                                       | -                                                 | 4                                    |

| Tota | l number of Lectures        |                                                                    | 42               |
|------|-----------------------------|--------------------------------------------------------------------|------------------|
| Eval | uation Criteria             |                                                                    |                  |
| Com  | ponents                     | Maximum Marks                                                      |                  |
| T1   |                             | 20                                                                 |                  |
| T2   |                             | 20                                                                 |                  |
| End  | Semester Examination        | 35                                                                 |                  |
| TA   |                             | 25 (Quiz, Assignments, Tutorials, Project)                         |                  |
| Tota | ıl                          | 100                                                                |                  |
| Reco | ommended Reading mate       | rial:                                                              |                  |
| Proj | ect based learning: Studer  | nts in a small group will collect sample data set and make classif | rication models. |
| They | will validate the model b   | y various selection and assessment methods. By this student        | will be able to  |
| make | e classification models and | validate it                                                        |                  |
| 1.   | E. Alpaydin, Introduction   | to Machine Learning, 4th Ed., PHI Learning 2020.                   |                  |
| 2.   | C. M. Bishop, Pattern Red   | cognition and Machine Learning, Springer 2013.                     |                  |
| 3.   | T. Hastie, R. Tibshirani a  | and J. Friedman, The Elements of Statistical Learning, 2nd Ed      | ., Springer      |
| Э.   | 2009                        |                                                                    |                  |

S. R. Das, Data Science Theories, Models, Algorithms, and Analytics, Apache License, 2016
S. S. Shwartz and S. B.David, Understanding Machine Learning: from Theory to Algorithms,

R.O.Duda, P.E.Hart and D.G.Stork, Pattern Classification, 2<sup>nd</sup> Ed.John Wiley, 2007

**CO-PO and CO-PSO Mapping:** 

Cambridge University Press, 2014

5.

6.

| COs    | PO1  | PO2  | PO3  | PSO1 |
|--------|------|------|------|------|
| C235.1 | 2    | 2    | 1    | 2    |
| C235.2 | 3    | 3    | 1    | 3    |
| C235.3 | 3    | 3    | 3    | 3    |
| C235.4 | 3    | 3    | 3    | 3    |
| Avg    | 2.75 | 2.75 | 2.00 | 2.75 |

## **Dissertation (19M27MA211)**

|                                                      |               |                                                    |                                  | (-> :           |             |                          |                     |                          |
|------------------------------------------------------|---------------|----------------------------------------------------|----------------------------------|-----------------|-------------|--------------------------|---------------------|--------------------------|
| Course Code                                          |               | 19M27MA211                                         | S                                | Semester Even   | ı           | Seme                     | stei                | r IV Session 2024 -2025  |
|                                                      |               |                                                    | (specify Odd/Even) Mor           |                 | Mont        | th from: January to June |                     |                          |
| Course Name                                          |               | Dissertation                                       | •                                |                 |             |                          |                     |                          |
| Credits                                              |               | 10                                                 |                                  |                 | Contact I   | Hours                    |                     |                          |
| Faculty (Nan                                         | nes)          | Coordinator(s)                                     |                                  |                 |             |                          |                     |                          |
|                                                      |               | Teacher(s)                                         |                                  |                 |             |                          |                     |                          |
|                                                      |               | (Alphabetically)                                   |                                  |                 |             |                          |                     |                          |
| COURSE OU will be able to                            | TCO           | MES: After comple                                  | tion                             | n of the disser | tation, stu | dent                     | CC                  | OGNITIVE LEVELS          |
| C250.1                                               | unde<br>areas | erstand the research-<br>s.                        | orie                             | ented problem   | s and rela  | ica                      | Un<br>(C2           | derstanding Level<br>2)  |
| C250.2                                               | orga<br>stud  | nize the literature to<br>y.                       | for                              | m a problem     | in said are | - CI                     | Ap<br>(C3           | plying Level<br>3)       |
| C250.3                                               | deve          | lop the solution of t                              | he p                             | problem.        |             |                          | Applying Level (C3) |                          |
| C250.4                                               | anal          | yze findings in terms                              | ns of a report.                  |                 |             |                          | An<br>(C            | alyzing Level<br>4)      |
| Employabili                                          | ty: In        | this course, the stud                              | ents                             | s will be work  | ing on res  | earch <sub>l</sub>       | prol                | blems in various fields  |
| of pure and a                                        | pplied        | l Mathematics as pe                                | r the                            | eir specializa  | tion. The   | studen                   | ts v                | will be able to learn to |
| use the lates                                        | st met        | hods/techniques/too                                | ols/s                            | softwares to    | achieve th  | he def                   | fine                | d objectives of their    |
| dissertation.                                        | This          | will help the stud                                 | dent                             | ts to develop   | mathem      | natical                  | an                  | nd scientific research   |
| temperament                                          | which         | n will be beneficial f                             | or t                             | their future ac | ademics a   | nd res                   | eard                | ch endeavors.            |
| Module No.                                           |               |                                                    |                                  | Topics in       | n module    |                          |                     |                          |
| 1                                                    |               | ification of the disser-<br>ore experimental and t |                                  | •               |             |                          |                     |                          |
| 2                                                    | _             | nire knowledge and and ed problem and find a       | -                                |                 |             | iques to                 | be                  | used in solving the      |
| Utilize latest techniques/obtain results. Evaluation |               |                                                    |                                  |                 |             |                          | •                   |                          |
| <b>Evaluation C</b>                                  | <br>Criteria  | a                                                  |                                  |                 |             |                          |                     |                          |
| Components                                           |               |                                                    | axin                             | mum Marks       |             |                          |                     |                          |
| Day to Day Evaluation                                |               |                                                    | 40 (To be awarded by supervisor) |                 |             |                          |                     |                          |
| End Term Eva                                         |               |                                                    |                                  | be awarded by   |             |                          |                     |                          |
| Special Contri                                       | bution        |                                                    |                                  | be awarded by   | a panel of  | 3 exan                   | nine                | ers)                     |
| Total                                                |               | 100                                                | ,                                |                 |             |                          |                     |                          |

### **CO-PO-PSO Mapping**

| PO1 | PO2 | PO3 | PSO1 |
|-----|-----|-----|------|
|     |     |     |      |

| CO1 | 2 | 2 | - | 2 |
|-----|---|---|---|---|
| CO2 | 2 | 3 | - | 3 |
| CO3 | 2 | 3 | - | 3 |
| CO4 | 2 | 2 | 2 | 3 |

### Certificate Course in Data Analytics for M.Sc. Programme

### **Objective**

The primary objective of this certificate course is to equip students with the knowledge and skills necessary to analyze and interpret complex data sets, allowing them to make informed decisions and contribute to the advancement of their respective fields.

**Eligibility:** This certificate course in Data Analytics (additional 9 credits) will be given to those students who are pursuing M.Sc in Mathematics, Physics, Economics, Microbiology and Environmental Biotechnology from JIIT.

**Prerequisite:** Proficiency in mathematics, including calculus, linear algebra, and probability/statistics, is essential. Some special lectures may be provided before 3<sup>rd</sup> semester to those students who don't have exposure of linear algebra and calculus, so that they can understand the subjects required for certificate course.

### **Curriculum Structure**

| S. N. | <b>Course Code</b> | Course Title          | Semester |   | Contact Hours |   | Credit |   |
|-------|--------------------|-----------------------|----------|---|---------------|---|--------|---|
|       |                    |                       |          | L | T             | P | Total  |   |
| 1     | 24M22MA112         | Techniques of Data    | 2nd      | 3 | -             | - | 3      | 3 |
|       |                    | Handling and          |          |   |               |   |        |   |
|       |                    | Visualization         |          |   |               |   |        |   |
| 2     | 24M22MA212         | Regression Models for | 3rd      | 3 | -             | - | 3      | 3 |
|       |                    | Data Inference and    |          |   |               |   |        |   |
|       |                    | Prediction            |          |   |               |   |        |   |
| 3     | 24C11MA211         | Pattern Recognition   | 4th      | 3 | -             | - | 3      | 3 |
|       |                    | Models for Learning   |          |   |               |   |        |   |
|       |                    | from Data             |          |   |               |   |        |   |
|       |                    | Total                 |          | 9 | -             | - | 9      | 9 |
|       |                    |                       |          |   |               |   |        |   |

### **Course Description**

# Techniques of Data Handling and Visualization (24M22MA112)

| Course Co         | Course Code 2                    |                                    | 12                         | Semester Even (specify Odd/Even)                                   |                         | 25               |                | Session 2024-                        |
|-------------------|----------------------------------|------------------------------------|----------------------------|--------------------------------------------------------------------|-------------------------|------------------|----------------|--------------------------------------|
| Ca 37             |                                  | Taskata                            | fD                         | In all a second 37                                                 | - ali                   | Month f          | from           | Jan-May 2025                         |
| Course Na         | ame                              | Techniques of 3                    | ı Data F                   | Handling and Visi                                                  | ualization<br>Contact I | Jours            | 3-0-0          | <u> </u>                             |
| Faculty (N        | Vames)                           | Coordinato                         | r(s)                       |                                                                    | Contact 1               | 10015            | 3-0-0          | ,                                    |
| ractity (1        | (anics)                          | Teacher(s)                         | 1 (3)                      |                                                                    |                         |                  |                |                                      |
|                   |                                  | (Alphabetica                       | ally)                      |                                                                    |                         |                  |                |                                      |
| COURSE student wi |                                  |                                    | the succ                   | essful completion                                                  | of this co              | urse, the        |                | COGNITIVE<br>LEVELS                  |
| CO 1              | def                              | ine important t                    | erms rel                   | ated to the data h                                                 | andling.                |                  |                | Remembering (C1)                     |
| CO 2              | exp                              | olain the theory                   | of data                    | visualization, ma                                                  | nagement                | and analy        | tics.          | Understanding (C2)                   |
| CO 3              | _                                | anize data usin<br>hniques.        | g visual                   | ization, cleaning                                                  | and manag               | gement           |                | Applying (C3)                        |
| CO 4              | con                              | npare different                    | techniq                    | ues of data analys                                                 | sis and pre             | sentation.       |                | Analyzing (C4)                       |
| Module<br>No.     | Title o                          |                                    | Topics                     | s in the Module                                                    |                         |                  |                | No. of<br>Lectures for<br>the module |
| 1.                | Data<br>Chara                    | cteristics                         | Catego                     | itative, Quorical, Structure, Size, Big                            | tured,                  | Oro<br>Unstruct  | dered<br>ured, | 5                                    |
| 2.                | Database and its functionalities |                                    |                            | ase Languages<br>ge, System Arch<br>Analytics, D<br>istrators.     | nitecture,              | Data Sec         |                | 6                                    |
| 3                 |                                  | lization and<br>Cleaning<br>iiques | techni<br>preser<br>duplic | gram, Box plot, ques, quality ntation, data finates and alization. | metrics                 | s for<br>missing | data           | 6                                    |
| 4                 | Statist<br>Decisi                | tical<br>ion Theory                | tasks,                     | ssion, classific<br>curve fitting using and testing<br>ty          | ng least s              | quare me         | thod,          | 6                                    |
| 5                 | Size is<br>Data                  | nsion and<br>ssues in              |                            | onent analysis, b                                                  |                         | oosting.         | cipal          | 5                                    |
| 6                 |                                  | s on Data<br>ing using<br>LAB      | operat                     | ng with MATLA<br>tions using MAT<br>rs, matrices, mul              | TLAB on                 | scalars,         |                | 5                                    |

|                        |                                                                                            | control structures, user defined functions and function files                                                                                                            |                                    |
|------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 7.                     | Hands on Data Visualization and Linear Algebra using MATLAB                                | two dimensional plots, three dimensional plots, image rendering, graphic object handles, Inverse, Rank, eigenvalue, eigenvector, solution of system of linear equations. | 5                                  |
| 8.                     | Hands on<br>Regression<br>Analysis using<br>MATLAB                                         | curve fitting, regression, training and testing errors, function handle.                                                                                                 | 4                                  |
| Tota                   | l number of Lectures                                                                       |                                                                                                                                                                          | 42                                 |
|                        | uation Criteria                                                                            |                                                                                                                                                                          |                                    |
|                        | ponents                                                                                    | Maximum Marks                                                                                                                                                            |                                    |
| T1                     |                                                                                            | 20                                                                                                                                                                       |                                    |
| T2                     | Samastan Evamination                                                                       | 20                                                                                                                                                                       |                                    |
| Ena<br>TA              | Semester Examination                                                                       | 35<br>25 (Quiz, Assignments, PBL)                                                                                                                                        |                                    |
| Tota                   | 1                                                                                          | 100                                                                                                                                                                      |                                    |
|                        | ommended Reading materia                                                                   |                                                                                                                                                                          |                                    |
| techi<br>expl<br>its m | niques will be applied to expored for efficient data storage anagement effectively.  Books | s in a small group will collect sample data set. The colain all the data in use and the data management tere. In this way, students will be able to learn presentation   | chniques will be ation of data and |
| 1.                     | Hastie, R. Tibshirani and J<br>2008.                                                       | <b>. Friedman,</b> The Elements of Statistical Learning, 2                                                                                                               | and Ed., Springer,                 |
| 2.                     | _                                                                                          | <b>own</b> , Computer Security: Principles and Practic 2. ISBN-10: 0136004245, ISBN-13: 9780136004240                                                                    |                                    |
| 3.                     | Compelling Figures, O'Rei                                                                  | ls of Data Visualization A Primer on Making Illy Media, 2019.ISBN-13: 978-1-492-03108-6.                                                                                 |                                    |
| 4.                     | A. Silberschatz and H. F. Edition, Mcgraw Hill Educa                                       | . <b>Korth and S. Sudarshan</b> , Database System Coation, 2019.                                                                                                         | oncepts, Seventh                   |
| 5.                     | A. A. Faisal and C. S. O<br>Learning, Cambridge Un                                         | <b>Ong and M. P. Deisenroth</b> , Mathematics for Maiversity Press, 2020.                                                                                                | chine                              |
| 6.                     | •                                                                                          | Introduction with Applications, Fourth Edition,                                                                                                                          | John Wiley &                       |

## **Regression Models for Data Inference and Prediction (24M22MA212)**

| Course  | 24M22MA212       | Semester Odd                        | Semester III              |
|---------|------------------|-------------------------------------|---------------------------|
| Code    |                  |                                     | <b>Session</b> 2024-25,   |
|         |                  |                                     | Month from July- Dec 2024 |
| Course  | Regression Model | s for Data Inference and Prediction |                           |
| Name    |                  |                                     |                           |
| Credits | 3                | Contact Hours                       | 3-0-0                     |

| Faculty       | Coordinator(s)                                                                                               |                                                                                                                                                                                                                                  |                    |
|---------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| (Names)       | Teacher(s)<br>(Alphabetically)                                                                               |                                                                                                                                                                                                                                  |                    |
| COURSE        | OUTCOMES                                                                                                     | COGNITIVE LEVELS                                                                                                                                                                                                                 |                    |
| After purs    | suing the above-men                                                                                          | ntioned course, the students will be able                                                                                                                                                                                        |                    |
| CO1           | •                                                                                                            | sic concepts of regression models, nd model building.                                                                                                                                                                            | Understanding (C2) |
| CO2           | apply parameter estimation techniques on given data set.                                                     |                                                                                                                                                                                                                                  | Applying (C3)      |
| CO3           | analyze data and make predictions and inferences using appropriate regression models                         |                                                                                                                                                                                                                                  | Analyzing (C4)     |
| CO4           | evaluate important variables to be included in order to make a regression model expressive.  Evaluating (C5) |                                                                                                                                                                                                                                  | Evaluating (C5)    |
| Module<br>No. | Title of the<br>Module                                                                                       | <b>Topics in the Module</b>                                                                                                                                                                                                      | No. of Lectures    |
| 1.            | Introduction                                                                                                 | Regression and model building, Data collection and uses of regression                                                                                                                                                            | 2                  |
| 2.            | Simple Linear<br>Regression                                                                                  | Simple linear regression model, Least-Squares Estimation of the model parameters, Inference about the slope and the intercept and the slope parameters, Prediction of new observations, Estimation by maximum likelihood method. | 6                  |
| 3.            | Multiple Linear<br>Regression                                                                                | Multiple linear regression models,<br>Least-Squares Estimation of the model<br>parameters, Inference in multiple linear<br>regression                                                                                            | 8                  |
| 4.            | Model<br>Adequacy<br>Checking                                                                                | Residual analysis, Detection and treatment of outliers, Lack of fit of the regression model                                                                                                                                      | 6                  |
| 5.            | Multicollinearity                                                                                            | Source of multicollinearity, Consequences of multicollinearity, Multicollinearity diagnostics, Remedies for multicollinearity                                                                                                    | 5                  |
| 6.            | Logistic<br>regression<br>Model                                                                              | Logistic Regression Models its linear<br>Predictions, Prediction of new<br>observations, Maximum likelihood<br>estimation of parameters, Interpretation<br>of parameters                                                         | 6                  |
| 7.            | Variable Selection and Model Building  mber of Lectures                                                      | Introduction: the model building problem, Model misspecification, Criteria for evaluating subset regression, Computational techniques for variable selection: all possible regressions, Stepwise regression methods              | 9                  |

| Evaluatio                                                                                                                                                                           | Evaluation Criteria                                                                          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Compone                                                                                                                                                                             | ents Maximum Marks                                                                           |  |  |
| T1                                                                                                                                                                                  | 20                                                                                           |  |  |
| T2                                                                                                                                                                                  | 20                                                                                           |  |  |
| End Seme                                                                                                                                                                            | End Semester Examination 35                                                                  |  |  |
| TA                                                                                                                                                                                  | 25 (Quiz, Assignments, PBL etc.)                                                             |  |  |
| Total                                                                                                                                                                               | 100                                                                                          |  |  |
| <b>Project based learning:</b> Each student in a group of 4-5 will collect data and apply appropriate regression models using software for prediction purpose. The students will be |                                                                                              |  |  |
| able to us                                                                                                                                                                          | se various regression models to achieve the defined objectives in different fields.          |  |  |
| Recomme                                                                                                                                                                             | ended Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc.       |  |  |
| (Text bool                                                                                                                                                                          | ks, Reference Books, Journals, Reports, Websites etc. in the IEEE format)                    |  |  |
| 1.                                                                                                                                                                                  | Montgomery, D.C., Peck, E.A. and Vining, G.G. (2012). Introduction to Linear                 |  |  |
| 1.                                                                                                                                                                                  | Regression Analysis (3rd Edition). John Wiley & Sons, Inc., New York.                        |  |  |
| 2.                                                                                                                                                                                  | Binghom, N. H. and Fry, J. M. (2010). Regression: Linear Models in Statistics. Springer, USA |  |  |
| 2                                                                                                                                                                                   | Myrers, R.H. (1990). Classical and Modern Regression with Applications (2nd Edition).        |  |  |
| 3.                                                                                                                                                                                  | PWS-Kent Publishers, Boston.                                                                 |  |  |
| 4.                                                                                                                                                                                  | Draper, N.R. and Smith, H. (1998). Applied Regression Analysis (3rd Edition). John           |  |  |
| 4.                                                                                                                                                                                  | Wiley & Sons, Inc., New York.                                                                |  |  |
| _                                                                                                                                                                                   | Golberg, M. A. and Cho, H. A. (2010): Introduction to Regression Analysis,                   |  |  |
| 5.                                                                                                                                                                                  | WIT press, USA                                                                               |  |  |

# Pattern Recognition Models for Learning from Data (24C11MA211)

| Course<br>Code  | 24C11MA211                                                                               | Semester Odd                             | Semester IV<br>Session 2024-<br>25,<br>Month from<br>Jan- May 2025 |
|-----------------|------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|
| Course<br>Name  | Pattern Recognition Models for Learning from Data                                        |                                          |                                                                    |
| Credits         | 3                                                                                        | Contact Hours                            | 3-0-0                                                              |
| Faculty         | Coordinator(s)                                                                           |                                          |                                                                    |
| (Names)         | Teacher(s)<br>(Alphabetically)                                                           |                                          |                                                                    |
| COURSE OUTCOMES |                                                                                          | COGNITIVE<br>LEVELS                      |                                                                    |
| After pursi     | uing the above-mentione                                                                  | ed course, the students will be able to: |                                                                    |
| CO1             | outline basic concepts                                                                   | of pattern recognition                   | Understanding (C2)                                                 |
| CO2             | apply classification and clustering models in pattern recognition                        |                                          | Applying (C3)                                                      |
| CO3             | examine various models of pattern recognition                                            |                                          | Analyzing (C4)                                                     |
| CO4             | evaluate the performance of various techniques for pattern recognition.  Evaluating (C5) |                                          |                                                                    |

| Module<br>No. | Title of the Module                                            | Topics in the Module                                                                                                                                                                                                                                                                                                 | No. of Lectures |
|---------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1.            | Introduction                                                   | Pattern Recognition; Applications and Examples, Clustering and Classification; Supervised and Unsupervised Learning from Data.                                                                                                                                                                                       | 4               |
| 2             | Theory of<br>Classification                                    | Problem of Classification, Binary Classification, Multiclass Classification, Discriminant Function, Linear and Non- Linear Separable Classes, Types of Errors, Training and Testing Errors, Accuracy, 0-1 Loss Function, Squared Error Loss Function (SELF), General Entropy Loss Function (GELF), Cross Validation. | 7               |
| 3.            | Bayesian<br>Decision Theory                                    | Bayes Theorem, Prior Distribution, Posterior Distribution, Loss Function, Naïve Bayes Classifier; Discriminant Function, Decision Surface.                                                                                                                                                                           | 6               |
| 4.            | Classification and<br>Clustering<br>Models                     | Minimum Distance Classifier, Linear<br>Regression Models for binary and<br>multiclasses, K-Nearest Neighbours, K-<br>mean, Decision Tree, Model Assessment.                                                                                                                                                          | 6               |
| 5.            | Neural Network                                                 | Perceptron, Transfer Function, Multilayer<br>Feed Forward Neural Network, Some Deep<br>Learning Models.                                                                                                                                                                                                              | 5               |
| 6.            | Hands on classification concepts using R                       | Introduction to R for Data Science,<br>Operations, functions and packages in R,<br>Bayesian Classifiers, Visualization of Data,<br>Graphical Analysis of Data                                                                                                                                                        | 5               |
| 7.            | Hands on<br>Classification and<br>Clustering<br>Models using R | Linear and Non-Linear separable classes,<br>Linear Regression Models, Decision Tree,<br>Clustering, Graphical Analysis of Data                                                                                                                                                                                       | 5               |
| 8.            | Hands on Neural<br>Network Models<br>using R                   | Perceptron, Neural Network, training, testing, prediction, deep learning models.                                                                                                                                                                                                                                     | 4               |
| Total nun     | iber of Lectures                                               | 42                                                                                                                                                                                                                                                                                                                   | <u> </u>        |


| <b>Evaluation Criteria</b>      |                                                                 |
|---------------------------------|-----------------------------------------------------------------|
| Components Maximum Marks        |                                                                 |
| T1 20                           |                                                                 |
| T2 20                           |                                                                 |
| End Semester Examination 35     |                                                                 |
| TA 25 (Quiz, Assignments, PB    | L etc.)                                                         |
| Total 100                       |                                                                 |
| Duaisat hagad lagunings Each at | udent in a course of 4.5 will called data and apply appropriate |

**Project based learning:** Each student in a group of 4-5 will collect data and apply appropriate classification models using statistical software. The students will be able to use various classifiers to classify the data in different fields of application.

| classify the data in different fields of application.                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aded Reading material: Author(s), Title, Edition, Publisher, Year of Publication etc. s, Reference Books, Journals, Reports, Websites etc. in the IEEE format)                |
| <b>Beyerer, J., Hagmanns, R., &amp; Stadler</b> , D. <i>Pattern Recognition: Introduction, Features, Classifiers and Principles</i> . Walter de Gruyter GmbH & Co KG, (2024). |
| <b>Braga-Neto</b> , U. <i>Fundamentals of Pattern Recognition and Machine Learning</i> . Berlin/Heidelberg, Germany: Springer. 2020.                                          |
| C.M.Bishop, Pattern Recognition and Machine Learning, Springer, 2006                                                                                                          |
| <b>K. Fukunaga</b> , <i>Introduction to Statistical Pattern Recognition</i> , 2nd Ed. Academic Press, New York, 1990.                                                         |
| Hastie, T., Tibshirani, R., & Friedman, J. H. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York, Springer, 2009.                 |
| <b>R.O. Duda, P.E. Hart, and D.G. Stork</b> , <i>Pattern Classification</i> , New York: John Wiley & Sons, 2001.                                                              |
| M. H. Beale, O. D. Jesús, Neural Network and Design, 2 <sup>nd</sup> Ed. 2014.                                                                                                |
| Gareth, J., Daniela, W., Trevor, H., & Robert, T. An introduction to statistical learning: with applications in R. Spinger, 2013.                                             |
| Crawley, M. J. The R book. John Wiley & Sons, 2012.                                                                                                                           |
| <b>Wickham, H., Çetinkaya-Rundel, M., &amp; Grolemund, G</b> . <i>R for data science</i> . O'Reilly Media, Inc.". (2023).                                                     |
| 1                                                                                                                                                                             |

Annual event (which are held every year): Event, Photo, Title, Weblink if any

**National Mathematics Day** 



**International Conference RAMSA** 



